EOB MODELS FOR COALESCING BINARIES

Alessandro Nagar
Institut des Hautes Etudes Scientifiques (IHES)
Bures-sur-Yvette (France)
nagar@ihes.fr

The IHES effective-one-body (EOB) code: eob.ihes.fr
T. Damour, AN,
S. Bernuzzi
D. Bini, P. Fleig
A. Nagar, 24 May 2016 - Hannover

Theory SYNERGY
 Analytical and Numerical General Relativity (AR/NR)
 $R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\frac{8 \pi G}{c^{4}} T_{\mu \nu}$ EOBNR

A. Nagar - 24 May 2016 - Hannover

TEMPLATES FOR GWS FROM BBH COALESCENCE

Brady, Craighton \& Thorne, 1998

Merger: Numerical Relativity (?)

Effective-One-Body (Buonanno \& Damour (2000) PN-resummation (Damour, Iyer \& Sathyaprakash (1998)

Numerical Relativity: >= 2005 (F. Pretorius, Campanelli et al., Baker et al.) Most accurate data: Caltech-Cornell spectral code: M. Scheel et al., 2008 (SXS collaboration)

Phase error:
< 0.02 rad (inspiral)
<0.1 rad (ringdown)
A. Nagar - 24 May 2016 - Hannover

EFFECTIVE ONE BODY (EOB): 2000

5 years before Numerical Relativity (NR):
EOB formalism was predictive, qualitatively and semi-quantitatively correct (10\%)

A. Buonanno \& T. Damour, PRD 59 (1999) 084006
A. Buonanno \& T. Damour, PRD 62 (2000) 064015
> 2005: Developing EOB \& interfacing with NR 2 groups did (and do) it

- A.Buonanno et al. (AEI)
- T.Damour \& AN + (>2005)

-2-body problem into effective problem
- relative dynamics in CoM frame
- Deformation of test-particle on Schwarzschild
- Resummation of PN information
- Blurred transition from inspiral to plunge
- Final black-hole mass
- Final black hole spin
- Complete waveform

$$
\nu=\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}}=\frac{\mu}{M}
$$

A. Nagar - 24 May 2016 - Hannover

STRUCTURE OF THE EOB FORMALISM

PN dynamics

(DD81,D82,DJS01,IF03,BDIF04)

Resummed (BD99)

PN rad losses
WW76, BDIWW95, BDEFI 05

PN waveform
BD89, B95\&05,ABIQ04,

BH perturbations
RW57, Z70, Z72

QNMs spectrum $\sigma_{N}=\alpha_{N}+i \omega_{N}$

$$
\begin{aligned}
& \frac{d r}{d t}=\left(\frac{A}{B}\right)^{1 / 2} \frac{\partial \hat{H}_{\mathrm{EOB}}}{\partial p_{r_{*}}} \\
& \frac{d p_{r_{*}}}{d t}=-\left(\frac{A}{B}\right)^{1 / 2} \frac{\partial \hat{H}_{\mathrm{EOB}}}{\partial r} \\
& \Omega \equiv \frac{d \varphi}{d t}=\frac{\partial \hat{H}_{\mathrm{EOB}}}{\partial p_{\varphi}} \\
& \frac{d p_{\varphi}}{d t}=\hat{\mathcal{F}}_{\varphi}
\end{aligned}
$$

Factorized waveform

$$
\begin{aligned}
h_{\ell m} & =h_{\ell m}^{(N, \epsilon)} \hat{h}_{\ell m}^{(\epsilon)} \\
\hat{h}_{\ell m}^{(\epsilon)} & =\hat{S}_{e f f}^{(\epsilon)} T_{\ell m} e^{i \delta_{\ell m}} \rho_{\ell m}^{\ell}
\end{aligned}
$$

BNS: tides (Love numbers)

EOB waveform: $h_{\ell m}^{\text {insplunge }}$

Numerical Relativity

HAMILTON'S EQUATIONS \& RADIATION REACTION

$$
\begin{aligned}
\dot{r} & =\left(\frac{A}{B}\right)^{1 / 2} \frac{\partial \hat{H}_{\mathrm{EOB}}}{\partial p_{r_{*}}} \\
\dot{\varphi} & =\frac{\partial \hat{H}_{\mathrm{EOB}}}{\partial p_{\varphi}} \equiv \Omega \\
\dot{p}_{r_{*}} & =-\left(\frac{A}{B}\right)^{1 / 2} \frac{\partial \hat{H}_{\mathrm{EOB}}}{\partial r}+\hat{\mathcal{F}}_{r_{*}} \\
\dot{p}_{\varphi} & =\hat{\mathcal{F}}_{\varphi}
\end{aligned}
$$

$$
H_{\mathrm{EOB}}=M \sqrt{1+2 \nu\left(\hat{H}_{\mathrm{eff}}-1\right)}
$$

Resummation multipole by multipole (Damour \& Nagar 2007, Damour, Iyer \& Nagar 2008, Damour \& Nagar, 2009, Pan et al. 2011)

$$
\hat{H}_{\mathrm{eff}} \equiv \sqrt{p_{r_{*}}^{2}+A(r)\left(1+\frac{p_{\varphi}^{2}}{r^{2}}+z_{3} \frac{p_{r_{*}}^{4}}{r^{2}}\right)}
$$

$$
\mathcal{F}_{\varphi} \equiv-\frac{1}{8 \pi \Omega} \sum_{\ell=2}^{\ell_{\max }} \sum_{m=1}^{\ell}(m \Omega)^{2}\left|R h_{\ell m}^{(\epsilon)}\right|^{2}
$$

$$
h_{\ell m} \equiv h_{\ell m}^{(N, \epsilon)} \hat{h}_{\ell m}^{(\epsilon)} \hat{h}_{\ell m}^{\mathrm{NQC}}
$$

A. Nagar - 24 May 2016 - Hannover

Newtonian $\times P N \times N Q C$

$$
\text { Newtonian } \times P N \times N Q C
$$

THE EOB[NR] POTENTIAL

$$
\begin{gathered}
A_{5 \mathrm{PN}}^{\text {Taylor }}=1-2 u+2 \nu u^{3}+\left(\frac{94}{3}-\frac{41}{32} \pi^{2}\right) \nu u^{4}+\nu\left[a_{5}^{c}(\nu)+a_{5}^{\ln } \ln u\right] u^{5}+\nu\left[a_{6}^{c}(\nu)+a_{6}^{\ln } \ln u\right] u^{6} \\
\left(m_{1}+m_{2}\right)^{2}
\end{gathered}
$$

Padé resummation + NR calibration of $a_{6}^{c}(\nu)=3097.3 \nu^{2}-1330.6 \nu+81.3804$ $A\left(u ; \nu, a_{6}^{c}\right)=P_{5}^{1}\left[A_{5 \mathrm{PN}}^{\text {Taylor }}\left(u ; \nu, a_{6}^{c}\right)\right]$

RESULTS: EOBNR/NR WAVEFORMS (NO SPIN)

Analogous agreement for other (SXS) mass ratios Nagar, Damour, Reisswig \& Pollney, arXiv:1506.08457
A. Nagar - 24 May 2016 - Hannover

Binding energy vs angular momentum

(Llama NR data)

Nagar, Damour, Reisswig \& Pollney, PRD 93 (2016), 044046

A. Nagar - 24 May 2016 - Hannover

EOB APPROACH TO THE DYNAMICS OF TWO SPINNING BLACK HOLES

Damour01, Buonanno-Chen-Damour06, Damour-Jaranowski-Schafer08, Barausse\&Buonanno10,Nagar11,Barausse\&Buonanno2011,Taracchini et al. 12, Balmelli\&Jetzer2013, Pan et al. 2013

Nonspinning case: EOB description = deformation of test-particle Hamiltonian in a Schwarzschild background

Spinning case: EOB description = deformation of (spinning) test-particle Hamiltonian in a Kerr background

Deformation parameter:

$$
\nu=\mu / M
$$

Based on Hamiltonian formulation in the center of mass frame

SPINNING BBHS

Spin-orbit \& spin-spin couplings

(i) Spins aligned with L: repulsive (slower) L-o-n-g-e-r INSPIRAL
(ii) Spins anti-aligned with L: attractive (faster) shorter INSPIRAL
(iii) Misaligned spins: precession of the orbital plane (waveform modulation)

$$
\chi_{1,2}=\frac{c \mathbf{S}_{1,2}}{G m_{1,2}^{2}}
$$

EOB/NR agreement: sophisticated (though rather simple) model for spin-aligned binaries

Damour\&Nagar, PRD90 (2014), 024054 (Hamiltonian) Damour\&Nagar, PRD90 (2014), 044018 (Ringdown) Nagar, Damour, Reisswig \& Pollney, PRD 93 (2016), 044046

Calibrating a single, effective, 4.5PN (NNNLO) spinorbit parameter
A. Nagar - 24 May 2016 - Hannover

EOBNR MODEL USED FOR GW150914

Different EOB Hamiltonian [Barausse \& Buonanno11, Taracchini et al.12]
SEOBNRv2: Taracchini, Buonanno et al., PRD 89, 061502 (R), 2014 SEOBNRv2_ROM_DoubleSpin: M. Puerrer, CQG 31, 195010 (2014)

Effectively used to get the masses: SEOBNRv2_ROM_DoubleSpin IMRPhenom (Khan et al., 2015)

+ different spin-orbit \& spin-spin sector

ENERGETICS

Taracchini, et al., 2014 SEOBNRv2 (LAL library)
A. Nagar - 24 May 2016 - Hanno

IHES EOBNR MODEL

SEOBNR_IHES model WAS NOT used for parameter estimation: $\quad \bar{F} \equiv 1-\max _{t_{0}, \phi_{0}} \frac{\left\langle h_{22}^{\mathrm{EOB}}, h_{22}^{\mathrm{NR}}\right\rangle}{\left\|h_{22}^{\mathrm{EO}}\right\|\left\|h_{22}^{\mathrm{NR}}\right\|}$
EOB/EOBNR UNFAITHFULNESS (40 NR SXS dataset)

SEOBNRv2

Taracchini, Buonanno et al., PRD 89, 061502 (R), 2014

SEOB_ihes
Nagar,Damour, Reisswig \& Pollney, PRD 93 (2016), 044046

A. Nagar - 24 May 2016 - Hannover

IT WOULD BE INTERESTING TO KNOW ...

A. Nagar - 24 May 2016 - Hannover

BINARY NEUTRON STARS (BNS)

All BNS need is Love!

$$
q=1 \quad M=2.7 M_{\odot}
$$

- Tidal effects
- Love numbers (tidal "polarization" constants)
- EOS dependence \& "universality"

See:
Damour, 1983
Damour,Soffel,Xu, 1999-2001
Flanagan\&Hinderer, PRD 2008
Damour\&Nagar, PRD 2009
Damour\&Nagar, PRD 2010
Damour,Nagar et al., PRL 2011
Bini,Damour\&Faye, PRD2012
Bini\&Damour, PRD 2014
Bernuzzi, Nagar, et al, PRL 2014
Bernuzzi, Nagar, Dietrich, PRL 2015
Bernuzzi, Nagar, Dietrich \& Damour,PRL, 2015

A. Nagar - 24 May 2016 - Hannover

THREE RESULTS

1. Numerical-relativity matches effective-one-body (EOB) analytical-relativity waveforms and dynamics essentially up to merger. Method to compute GW templates for LIGO/Virgo to measure EOS out of tidal effects
S. Bernuzzi, A. Nagar, T. Dietrich \& T. Damour, PRL 114 (2015), 161103
"Modeling the Dynamics of Tidally Interacting Binary Neutron Stars up to Merger"
[Consistency with Hotokezaka et al., PRD 91 (2015) 6, 064060, notably with reduced eccentricity.
With ourselves with improved simulations (unpublished) \& Hinderer et al. 2016 (see AB talk)]
2. Quasi-universality in BNS merger (binding energy, angular momentum, GW frequency vs tidal coupling constant): explained using EOB theory S. Bernuzzi, A. Nagar, S. Balmelli, T. Dietrich \& M. Ujevic, PRL 112 (2014), 201101 "Quasiuniversal properties of neutron star mergers"
3. Quasi-universality of post-merger $M f_{2}$ frequency vs tidal coupling constant S. Bernuzzi, T. Dietrich \& A. Nagar, PRL 115 (2015), 091101
"Towards a description of the complete gravitational wave spectrum of neutron star mergers"
Unifying description of inspiral, merger and post-merger phases

TIDAL EFFECTS IN EOB FORMALISM

Tidal extension of EOB formalism: nonminimal worldline couplings

$$
\Delta S_{\text {nonminimal }}=\sum_{A} \frac{1}{4} \mu_{2}^{A} \int d s_{A}\left(u^{\mu} u^{\nu} R_{\mu \alpha \nu \beta}\right)^{2}+\ldots
$$

Damour\&Esposito-Farèse96, Goldberger\&Rothstein06, TD\&ANQQ
Modifications of the EOB effective metric...

$$
\begin{aligned}
A(r) & =A_{r}^{0}+A^{\text {tidal }}(r) \\
A^{\text {tidal }}(r) & =-\kappa_{2}^{T} u^{6}\left(1+\bar{\alpha}_{1} u+\bar{\alpha}_{2} u^{2}+\ldots\right)+\ldots
\end{aligned}
$$

And tidal modifications of GW waveform \& radiation reaction

- Need analytical theory for computing $\mu_{2}, \kappa_{2}^{T}, \bar{\alpha}_{1} \ldots$
-(?)Need accurate NR simulations to "calibrate" the higher-order PN tidal contributions, that may be quite important during the late inspiral

RESUMMED TIDAL INTERACTION

Bini\&Damour (2015) resummed expression for $\hat{A}_{\ell}^{\text {tidal }}$
Presence of a pole: potential strongly attractive @ mrg

FIG. 2: Energetics: comparison between NR data, TEOB Resum , TEOB ${ }_{\text {NNLO }}$ and TPN. Each bottom panel shows the two EOB-NR differences. The filled circles locate the merger points (top) and the corresponding differences (bottom). The shaded area indicates the NR uncertainty. The TEOB Resum model displays, globally, the smallest discrepancy with NR data (notably for merger quantities), supporting the theoretical, light-ring driven, amplification of the relativistic tidal factor.

[^0]
Waveform

FIG. 3: Phasing and amplitude comparison (versus NR retarded time) between TEOB Resum , NR and the phasing of TT4 for three representative models. Waves are aligned on a time window (vertical dot-dashed lines) corresponding to $I_{\omega} \approx(0.04,0.06)$. The markers in the bottom panels indicate: the crossing of the TEOB Resum $^{\text {LSO radius; NR (also with a dashed vertical line) }}$ and EOB merger moments.

Name	EOS	κ_{2}^{T}	r_{LR}	$\mathcal{C}_{A, B}$	$M_{A, B}\left[M_{\odot}\right]$	$M_{\mathrm{ADM}}^{0}\left[M_{\odot}\right]$	$\mathcal{J}_{\mathrm{ADM}}^{0}\left[M_{\odot}^{2}\right]$	$\Delta \phi_{\mathrm{NRmmg}}^{\mathrm{TT} 4} \Delta \phi_{\mathrm{NRmrg}}^{\mathrm{TEOB}}$			
2B135	2B	23.9121	3.253	0.2049	1.34997	2.67762	7.66256	-1.25	-0.19	$+0.57^{a}$	± 4.20
SLy135	SLy	73.5450	3.701	0.17381	1.35000	2.67760	7.65780	-2.75	-1.79	-0.75	± 0.40
$\Gamma_{2} 164$	$\Gamma=2$	75.0671	3.728	0.15999	1.64388	3.25902	11.11313	-2.29	-1.36	-0.31	± 0.90
$\Gamma_{2} 151$	$\Gamma=2$	183.3911	4.160	0.13999	1.51484	3.00497	9.71561	-2.60	-1.92	-1.27	± 1.20
H4135	H4	210.5866	4.211	0.14710	1.35003	2.67768	7.66315	-3.02	-2.43	-1.88	± 1.04
MS1b135	MS1b	289.8034	4.381	0.14218	1.35001	2.67769	7.66517	-3.25	-2.84	-2.45	± 3.01

A. Nagar - 24 May 2016 - Hannover

SEOB_IHES

Nonspinning BBHs \& BNS (tides)

Free download Matlab code: https://eob.ihes.fr.
$(2,1) \&(3,3)$ modes included

Spinning (nonprecessing) BBHs:
Matlab (development version)
C++ version (Philipp Fleig), including tides.
Some (early) performance numbers for equal-mass, nonspinning:
$M f_{0}=2 \times 10^{-4} \quad 628 s \quad\left(r_{0}=120 M\right)$
$M f_{0}=1 \times 10^{-4} \quad 6619 s\left(r_{0}=216 M\right)$
MacBook pro, Intel Core i7, 2.7GHz
A. Nagar - 24 May 2016 - Hannover

CONCLUSIONS

SEOB_ihes: Alternative model to SEOBNRv2 for spin-aligned BBHs.
Different theoretical elements and different calibration than SEOBNRv2.

Performances in parameter estimations should be explored/compared.
Careful EOB/NR comparisons of both waveforms \& energetics (including BNS)
Matlab code free available. C++ code available on request

The wave(s) have passed....

[^0]: S. Bernuzzi, A. Nagar, T. Dietrich \& T. Damour, PRL 114 (2015), 161103
 A. Nagar - 24 May 2016 - Hannover

