Instrumental Validation of GW150914

Andrew Lundgren

Sources

- Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914 (arXiv:1602.03844)
- LIGO detector logs (public):
 - <u>alog.ligo-wa.caltech.edu</u>
 - <u>alog.ligo-la.caltech.edu</u>

Outline

- The Instrument
- Background Estimation: Measure not Model
- The Noise
- Background sources overview
 - Long Range Environmental
 - Local Environmental
 - Instrumental
 - The Unknowns

The Instrument

The Instrument

Why Non-Stationary Noise

- Mirrors move due to residual seismic motion
 - Couplings change with angles
- Servo loops pushed to edge of their abilities
- Imperfect optics mean light is not just a resonant Gaussian beam
- Scattered light
- Electronics glitches
- Other

Estimating the Background

- Cannot shield GWs (or turn them off)
- Cannot model instrument
 - Too complicated and heterogeneous
- Build two instruments and do time slides
- Separately, rule out common sources of noise
 - Sensors for any long-range effects

Range

CBC trigger rates

The Candidates

Kinds of Coupling

- Seismic
- Acoustic
- Electromagnetic
- Optical (in the instrument)
- Other

- Long-range (inter-site)
- Local external (environmental)
- Local internal (instrumental)

Physical and Environmental Monitor Layout

Long-range

Rule out long-range effects

- Only earthquakes were magnitude 2.1
- Only two magnetometers at L1 saw anything at al
 - Factor of 40 too low
- Interesting lightning strike in Burkina Faso
 - Not able to affect either site
- Cosmic ray rates low
- External observatories reported no particular EM interference

GPS-synchronized noise

Local Environmental

Microphones

Local acoustic noise can couple (usually at the laser)

Motorcycle driver: Bubba Gateley

Air compressor

Ground motion at the LIGO Hanford Y-end station

Instrumental

RF Noise

H1:LSC-REFL_SERVO_CTRL_OUT_DQ 2015-09-21 17:31:05 - 1,126,891,882 (60s)

RF Whistles

Beat note of two RF lines

L1:OAF-CAL_DARM_DQ at 1113031393.000 with Q of 45.3

L1:LSC-REFL_A_LF_OUT_DQ at 1124521059.299 with Q of 11.3

45 MHz Modulation

More RF troubles

45 MHz phase modulation used for control

Once again, it's stronger in auxiliary channels and we track it

The Blips

