

The Advanced LIGO Detectors in the Era of First Discoveries

Benno Willke for the LIGO scientific collaboration (LSC)

LIGO-G1601139

Leibniz Universität Hannover and Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)

Hannover May 2016

bewill/talks/16Hannover

Gravitational Wave Transducer

Gravitational Wave Transducer

Leibniz Universität

00

Hannover

4 credit: Patrick Kwee, AEI

Leibniz Universität

Hannover

10

Leibniz Universität Hannover 5 credit: Patrick Kwee, AEI

10

credit:

10

Interferometer with "Free" Mirrors

l t Leibniz *i o* 2 Universität *i o* 4 Hannover 7 credit: CERN courrier

aLIGO Noise Sources - Spectral Density

g

Leibniz Universität

100!

Hannover

Gravitational Wave Transducer

Leibniz Universität

00

Hannover

credit:

10

Michelson IFO at mid-fringe

Michelson IFO With Varying Intensity

Phasor Picture

- define $E = \Re(A)$ with $A(z,t) = a \cdot exp(i(\omega t kz))$
- plot $a = E_0(t) \cdot \exp(i\varphi_s(t))$ as a vector in complex plane
- use basepoint of vector to identify frequency on second horizontal axis

Dark Fringe Operation Point

Dark Fringe Operation Point

1 1 Leibniz 102 Universität 1004 Hannover

Differential Phase Change in Arms

1 1 Leibniz 102 Universität 1004 Hannover

Accumulated Phase Shift in Arm Cavities

Gravitational Wave Transducer

$$h(t) \Longrightarrow \Sigma \Longrightarrow \Sigma \Longrightarrow \Sigma \Longrightarrow H(t_k)$$

frequency domaint description:

 $H(f) = \mathcal{C}(f) \cdot h(f)$

optical responce (optical gain)

$$C(f) = \frac{4\pi \cdot G_{arm} \cdot L_0}{\lambda} \left(\frac{G_{prc} \cdot P_{in} \cdot P_{LO}}{G_{src}}\right)^{1/2} \cdot K_-(f)$$

 $K_{-}(f)$: differential coupled cavity pole

Jniversität Hannover

18

ibniz

Gravitational Wave Transducer

Sinusoidal Phase Shift in Arms - Sideband Picture

l l Leibniz l 0 2 Universität l 0 4 Hannover

Quantum Vacuum Fluctuations - Two Quadratures

l l Leibniz i o 2 Universität to o 4 Hannover

Quantum Vacuum Fluctuations - Radiation Pressure

Quantum Vacuum Fluctuations - Radiation Pressure

Squeezing - Amplitued Quadrature

1 1 Leibniz 102 Universität 1004 Hannover

Squeezing - Phase Quadrature

l l Leibniz l O Z Universität l O Ø 4 Hannover

Signal Recycling

Advanced LIGO - Quantum Noise Shaping

G

Leibniz Universität

100

Hannover

Gravitational Wave Transducer

lil Leibniz loi2 Universität looi4 Hannover 28

Thermal Noise - Fluctuation Dissipation

Thermal Noise - Fluctuation Dissipation

Leibniz

Gas and Squeezed Film

Leibniz

Charge Noise

I iLeibnizi o 2Universitäti o 6 4Hannover32

Optical Layout Advanced LIGO (power levels 01)

l l Leibniz l 0 2 Universität l 0 4 Hannover

Advanced LIGO Laser

Leibniz Universität

Hannover

34

relative power noise: $RPN < 10^{-8} 1/\sqrt{Hz}$ relative frequency noise: $\frac{\Delta v}{v} < 10^{-17} Hz/\sqrt{Hz}$ power fraction in higher order spatial modes: HOM < 0,1% beam pointing at 4km: $\delta x < 0,2 mm$

Kwee et al. Opt. Lett. (2009), Kwee et al. Opt. Express (2012)

Advanced LIGO Laser Beam Preparation

Hannover

Vacuum System

Seismic Isolation System

37 Matichard F. et al., Class. Quantum Grav. 32 (2015) 185003

Test Mass - Seismic Isolation

Advanced LIGO seismic isolation system

Low Loss Quadruple Pendulum Suspension

⁴⁰ Abbott et al. PRL 116, 131103 (2016); Aasi et al., Class. Quant. Grav. 32 (2015) 074001; Martynov D.V. et al arXiv:1604.00439

Mirrors

	Surface error, central 160 mm diam., power and astigmatism removed, rms		
	$> 1 \text{ mm}^{-1}$	$1-750 \text{ mm}^{-1}$	Radius of curvature spread
Specification Actual	< 0.3 nm 0.08–0.23 nm	< 0.16 nm 0.07–0.14 nm	-5, +10 m -1.5, +1 m

25% Ti doping of the TaO₅ stacks => 40% mechanical loss reduction

Armlength Stabilization System

Leibniz Universität

100

Hannover

Thermal Compensation System

Universität Hannover

43

Leibniz

10

Length Sensing and Control

l l Leibniz l 0 2 Universität l 0 9 4 Hannover

44

Aasi et al., Class. Quantum Grav. 32 (2015) 074001

Calibration via Radiation Pressure

Advanced LIGO

Parameter	Initial LIGO	Advanced LIGO
Input Laser Power	10 W (10 kW arm)	180 W
Mirror Mass	10 kg -	→ 40 kg
Interferometer Topology	Power-recycled Fabry-Perot arm cavity Michelson	Dual-recycled Fabry-Perot arm cavity Michelson (stable RC)
GW Readout Method	RF heterodyne	DC homodyne
Optimal Strain Sensitivity	3 x 10 ⁻²³ / rHz	Tunable, better than 5 x 10 ⁻²⁴ → / rHz in broadband
Seismic Isolation Performance	<i>f_{low}</i> ~ 50 Hz	→ <i>f_{low}</i> ~ 12 Hz
Mirror Suspensions	Single Pendulum	Quadruple pendulum

Sensitivity Improvement Advanced LIGO

Noise Morphology During O1

Leibniz

10

Noise Projections - High Frequencies

$$L_{noise}(f) \equiv L_0 \cdot h_{noise}(f) = \underline{T(f)} \cdot N(f)$$

 10^{-18} Measured noise Frequency noise Quantum noise Intensity noise Dark noise Input jitter Thermal noise RF oscillator noise Gas noise Expected noise Displacement, m/Hz^{1/2} 0.50 10^{-50} 10⁻¹⁹ 10⁻²¹ 10^{3} Frequency, Hz

via signal injection

via independent (witness) sensor

Martynov D.V. et al ,arXiv:1604.00439 [astro-ph.IM]

2 Universität 4 Hannover

100!

Leibniz

Noise Projections - Low Frequencies

Universität

Hannover

100

Time Varying Response and Stationarity (01)

Gravitational Wave Transducer

lil Leibniz lo2 Universität lo04 Hannover 52

Near Future Developments

The Future of Gravitational Wave Detectors

Hild S. Class. Quantum Grav. 29 (2012) 124006

Leibniz Universität

Hannover

54

10