Tests of general relativity with GW150914

Chris Van Den Broeck

Nikhef - National Institute for Subatomic Physics Amsterdam, The Netherlands

"The first Observation of a Binary Black Hole Merger: Status and Future Prospects" Hannover, Germany, May 23-26, 2016

Companion papers

- □ GW150914: The Advanced LIGO detectors in the era of first discoveries <u>http://arxiv.org/abs/1602.03838</u>
- GW150914: First results from the search for binary black hole coalescences with Advanced LIGO <u>http://arxiv.org/abs/1602.03839</u>
- □ Properties of the binary black hole merger GW150914 http://arxiv.org/abs/1602.03840
- Tests of general relativity with GW150914 <u>http://arxiv.org/abs/1602.03841</u>
- □ The rate of binary black hole mergers inferred from Advanced LIGO observations surrounding GW150914 http://arxiv.org/abs/1602.03842
- □ Observing gravitational-wave transient GW150914 with minimal assumptions http://arxiv.org/abs/1602.03843
- □ Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914 http://arxiv.org/abs/1602.03844
- □ Calibration of the Advanced LIGO detectors for the discovery of the binary-black hole merger GW150914 http://arxiv.org/abs/1602.03845
- □ Astrophysical implications of the binary black-hole merger GW150914 http://arxiv.org/abs/1602.03846
- □ GW150914: Implications for the stochastic gravitational wave background from binary black holes <u>http://arxiv.org/abs/1602.03847</u>
- □ High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube <u>http://arxiv.org/abs/1602.05411</u>
- □ Localization and broadband follow-up of the gravitational-wave transient GW150914 http://arxiv.org/abs/1602.08492

Tests of GR with GW150914

□ Some of the most stringent tests: Binary neutron star observations

- Change in orbital period $\dot{P}_{orb} \sim -10^{-14} 10^{-12} \rightarrow \text{ test of quadrupole formula}$
- Orbital compactness GM/c²R ~ (few) x 10⁻⁶, typical speed v/c ~ (few) x 10⁻³
- Mostly tests in low-velocity, weak-field regime
 - Also some strong-field tests, but not of the spacetime dynamics

□ GW150914:

- Orbital period from $\dot{P}_{
 m orb} \sim -0.1$ at f = 30 Hz to $\dot{P}_{
 m orb} \sim -1$ at f = 132 Hz
- Just before merger: compactness $GM/c^2R \sim 0.2$, speed v/c ~ 0.5
- Pure spacetime process
- Opportunity to probe new regimes of gravity:
 - Signal consistent with merger of two black holes to form single, Kerr BH?
 - Dynamics of the process in agreement with vacuum Einstein equations?
 - Can we place bounds on deviations in e.g. post-Newtonian coefficients?
 - Was the propagation of the signal as predicted by GR?
 - Can we constrain non-GR polarization states?

Waveform models

□ Inspiral-merger-ringdown effective one-body model (SEOBNRv2):

- Post-Newtonian theory for the inspiral
- Perturbation theory for the final black hole
- Calibrated against numerical relativity waveforms
- Double aligned spins
- □ Phenomenological models (IMRPhenomPv2):
 - Post-Newtonian theory for early inspiral
 - Phenomenological description of late inspiral, merger, ringdown
 - Calibrated against numerical relativity waveforms
 - Effective description of precessing spins
- □ Further validation for analyses of GW150914:
 - Comparison with existing NR waveforms as well as new, targeted simulations
 - Systematic waveform uncertainties < statistical measurement uncertainties

Subtraction of most probable waveform from the data

Subtraction of most probable waveform from the data

□ Compute log Bayes factor (logarithm of ratio of evidences) for:

- Signal against noise
- Signal against glitch

Noise-only hypothesis preferred over both glitch and signal hypotheses

• Indication of the stability of the detectors at time of GW150914

□ Coherent SNR of residual consistent with detector noise

□ Residual SNR leads to fitting factor of most probable waveform and GW150914:

 $\text{SNR}_{\text{res}}^2 = (1 - \text{FF}^2) \text{FF}^{-2} \text{SNR}_{\text{det}}^2 \longrightarrow \text{FF} \ge 0.96$

Consistency of masses and spins of initial and final objects

Measure masses, spins of component black holes from *inspiral* signal
 General relativity allows to predict mass, spin of final black hole
 Compare with mass, spin of final black hole obtained from *post-inspiral*

Consistency of masses and spins of initial and final objects

Measure masses, spins of component black holes from *inspiral* signal
 General relativity allows to predict mass, spin of final black hole
 Compare with mass, spin of final black hole obtained from *post-inspiral*

Searching for a least-damped quasi-normal mode

□ Fit single damped sinusoid to find damping frequency and damping time

Assumption that other modes hard to extract

□ NR simulations suggest that QNM regime starts at 10 to 20 M after merger

- For M ~ 68 M_{sun} this means 3 to 7 ms after merger
- Match damped sinusoids with different starting times after merger (dashed curves)
- Compare with predictions from mass and spin measured with full IMR waveforms

Testing the black hole no-hair theorem?

□ If multiple QNMs could be observed: test of no-hair theorem

- Damping times τ_{nlm} and frequencies f_{nlm} only depend on M_f and a_f
- Hence only two of them are independent \rightarrow consistency test

□ For multiple QNMs to be visible, need system with

- Asymmetric component masses
- More misalignment of orbital angular momentum with line of sight

Gossan et al., PRD 85, 124056 (2012)

□ IMRPhenom waveform:

- Inspiral regime
 - Post-Newtonian parameters $\{\varphi_0, \varphi_1, \dots, \varphi_7\}, \{\varphi_{5l}, \varphi_{6l}\}$
 - Late-inspiral parameters: $\{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}$
- Intermediate regime $\{eta_1,eta_2,eta_3\}$
- Merger-ringdown regime $\{lpha_1, lpha_2, lpha_3, lpha_4\}$

Phenomenological parameters capture frequency dependences in different regimes

□ Allow for *fractional deviations* in parameters characterizing waveform: $p_i \rightarrow (1 + \delta \hat{p}_i) p_i$

- Let $\delta \hat{p}_i$ vary freel in addition to other system parameters (masses, spins, ...)
- General relativity: $\delta \hat{p}_j = 0$

□ Single-parameter analyses:

- Only one of the $\delta \hat{p}_i$ left free at a time, all others set to zero
- Probes deviations that occur predominantly at e.g. a particular PN order
- If measurable deviation at multiple PN orders, should also be picked up

□ Multiple-parameter analyses:

- Multiple $\delta \hat{p}_i$ left free in batches:
 - All the PN parameters together
 - All the intermediate-regime parameters together
 - All the merger-ringdown parameters together

□ Red: single-parameter analyses

□ Cyan: multiple-parameter analyses

10

5

0

-5

-10

-15

-20

 φ_{6l}

φ7

φ6

0PN

 φ_0

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

 φ_1

2

0

-2

-4

 φ_2

φ3

φ4

n

*φ*51

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

 $\delta \hat{p}_i$

 \Box For the post-Newtonian parameters: Offsets at the 2 – 2.5 σ level

- Could be due to noise realization
 - Took NR waveform with parameters consistent with GW150914
 - Put this in 20 stretches of noise close to time of GW150914
 - Found results very similar to the above in 1 case
- But: cannot exclude missing physics more detections needed

□ Log Bayes factors (ratio of evidences) for GR versus the extended models

waveform regime			med	edian GR quantile		$\log_{10} B_{\text{model}}^{\text{GR}}$		
	parameter	f-dependence	single	multiple	single	multiple	single	multiple
early-inspiral regime	$\delta \hat{\varphi}_0$	$f^{-5/3}$	$-0.1^{+0.1}_{-0.1}$	$1.4^{+3.3}_{-3.0}$	0.94	0.21	1.9 ± 0.1	
	$\delta \hat{arphi}_1$	$f^{-4/3}$	$0.3^{+0.4}_{-0.4}$	$-0.4^{+0.7}_{-0.7}$	0.14	0.87	1.6 ± 0.1	
	$\delta \hat{arphi}_2$	f^{-1}	$-0.35^{+0.3}_{-0.35}$	$-3.2^{+19.3}_{-15.2}$	0.97	0.60	1.2 ± 0.2	
	$\delta \hat{arphi}_3$	$f^{-2/3}$	$0.2^{+0.2}_{-0.2}$	$2.6^{+13.8}_{-15.7}$	0.04	0.41	1.2 ± 0.1	
	$\delta \hat{arphi}_4$	$f^{-1/3}$	$-2.0^{+1.6}_{-1.8}$	$0.5^{+17.3}_{-18.2}$	0.98	0.49	0.3 ± 0.1	3.9 ± 0.1
	$\delta \hat{\varphi}_{5l}$	$\log(f)$	$0.8^{+0.6}_{-0.55}$	$-1.5^{+19.1}_{-16.3}$	0.02	0.55	0.7 ± 0.1	
	$\delta \hat{arphi}_6$	$f^{1/3}$	$-1.5^{+1.1}_{-1.1}$	$-0.6^{+18.2}_{-17.2}$	0.99	0.53	0.4 ± 0.1	
	$\delta \hat{arphi}_{6l}$	$f^{1/3}\log(f)$	$8.9^{+6.8}_{-6.8}$	$-2.4^{+18.7}_{-15.2}$	0.02	0.57	-0.2 ± 0.1	
	$\delta \hat{arphi}_7$	$f^{2/3}$	$3.7^{+2.6}_{-2.75}$	$-3.4^{+19.3}_{-14.8}$	0.02	0.59	-0.0 ± 0.2	
intermediate regime	$\delta \hat{\beta}_2$	$\log f$	$0.1^{+0.4}_{-0.3}$	$0.15^{+0.6}_{-0.5}$	0.29	0.35	1.2 ± 0.1	22 ± 0.1
	$\delta \hat{\beta}_3$	f^{-3}	$0.1^{+0.5}_{-0.3}$	$-0.0^{+0.8}_{-0.6}$	0.38	0.56	0.6 ± 0.1	2.2 ± 0.1
merger-ringdown regime	$\delta \hat{\alpha}_2$	f^{-1}	$-0.1^{+0.4}_{-0.4}$	$-0.0^{+1.0}_{-1.15}$	0.68	0.51	1.1 ± 0.1	
	$\delta \hat{\alpha}_3$	$f^{3/4}$	$-0.5^{+2.0}_{-1.5}$	$-0.0^{+4.4}_{-4.4}$	0.67	0.50	1.3 ± 0.1	2.1 ± 0.1
	$\delta \hat{lpha}_4$	$\tan^{-1}(af+b)$	$-0.1^{+0.5}_{-0.6}$	$-0.0^{+1.2}_{-1.1}$	0.61	0.55	1.2 ± 0.1	

Constraints on deviations in post-Newtonian parameters

□ First empirical bounds on high-order PN phase parameters

□ Bounds not yet very tight, but:

- May see sources with more inspiral cycles in detector's sensitive band
 - Light binary black holes, or binary neutron star coalescences
- Same source at final aLIGO design sensitivity would have been ~3 times louder
- Will be able to combine results from all future detections!

Constraining the mass of the graviton

□ Assume only effect on propagation, not on binary dynamics

□ Modified dispersion relation for the graviton:

$$E^2 = p^2 c^2 + m_g^2 c^4$$

 $rac{v_g}{c} \simeq 1 - rac{1}{2} rac{h^2 c^2}{(\lambda_g f)^2} \qquad \qquad \lambda_g = rac{h}{m_g c} \quad ext{Compton wavelength}$

□ Arrival times altered: frequency-dependent effect

$$t_a = (1+z) \left[t_e + rac{D}{2(\lambda_g f)^2}
ight]$$

□ Effect on the GW phase:

$$\delta \Phi(f) = -rac{\pi Dc}{\lambda_g^2(1+z)} f^{-1}$$

□ Will compare results with "static" bounds (e.g. Solar system)

• Newtonian potential gets Yukawa-like correction (gravity now has finite range): $\varphi(r) = -GM/r \longrightarrow -(GM/r) \exp(-r/\lambda_g)$

Constraining the mass of the graviton

GW150914 improves on binary pulsar bound (only other dynamical bound) by 3 orders of magnitude

□ GW150914 improves on Solar system static bound by factor of few

□ Other bounds available:

- Dynamics of galaxy clusters ($\lambda_a > 6.2 \times 10^{19} \text{ km}$), weak lensing ($\lambda_a > 1.8 \times 10^{22} \text{ km}$)
 - But: uncertainty in amount of dark matter and its distribution
- Non-observation of superradiant instabilities in supermassive black holes $(\lambda_a > 2.5 \times 10^{13} \text{ km})$

No constraint on non-GR polarization states

 □ Metric theories of gravity allow for up to 6 polarization states
 □ Compare polarizations from GR with simple case of pure breathing mode
 □ Cannot distinguish between them: log B^{GR}_{scalar} = -0.2±0.5
 □ Meant to illustrate difficulty in distinguishing between GR and non-GR polarization states with GW150914

Need larger network of detectors with different orientations

- Advanced LIGO
- Advanced Virgo
- KAGRA
- LIGO-India

Will, Liv. Rev. Rel. 17, 4 (2014)

What about specific alternative theories of gravity?

□ With exception of λ_g bound and alternative polarizations study, did not look into implications for specific alternative theories of gravity:

- Einstein-aether theory
- Quadratic curvature corrections
- Dynamical Chern-Simons theory
- ...

or the possibility of compact binaries composed of more exotic objects:

- Boson stars
- Gravastars
- ..

We lack accurate predictions for inspiral-merger-ringdown GW signals in specific alternative theories

• Would be of interest if waveform models developed in near future

A wish list

□ More asymmetric component masses

- Sub-dominant harmonics of the signal become better visible (also inspiral)
- If also high total mass, multiple QNMs in the ringdown can be seen
- □ Systems with lower total mass
 - Much more of the inspiral in sensitive band of detectors
 - Better bounds on PN parameters
- □ Significantly misaligned spins
 - Precession of spins and orbital plane
 - Spin-orbit and spin-spin interactions
- □ Higher SNRs
 - GW150914 would be factor ~3 louder in aLIGO at final design sensitivity
- □ Binary neutron star coalescences
 - Constrain new kinds of GR violations, e.g. dynamical scalarization
- □ Lots of detections!
 - Combine information from all detections to place stronger bounds on PN and other coefficients

Conclusions for now

GW150914 allowed us to probe of the genuinely strong-field dynamics of spacetime

- Residual data after subtraction of most probable waveform were consistent with noise
- Component masses and spins during inspiral were consistent with mass and spins of the final black hole
- End of the signal consistent with least-damped quasi-normal mode
- First constraints on high-order post-Newtonian coefficients as well as parameterized deviations in merger/ringdown
- Best dynamical bound on the graviton mass so far: $m_{d} < 1.2 \times 10^{-22} \text{ eV/c}^2$
- However, no constraint on non-GR polarization states

The results from all tests performed on GW150914 are consistent with GR