DETECTING & INTERPRETING GV150914 WITH UNMODELED & MODELED SEARCHES

COLLIN CAPANO

MAX PLANCK INSTITUTE FOR GRAVITATIONAL PHYSICS

HANNOVER, GERMANY

How was GW150914 detected?

How do we know it was a binary black hole (BBH)?

Why are we confident GW150914 is a gravitational wave?

GW150914

TODD Trends, Observations and Dangerous Drivel

(TODD not TED... Google "John Oliver Scientific Studies p-hacking")

1. UNMODELED SEARCHES

2. MODELED SEARCHES

3. PARAMETER ESTIMATION OF GW150914

4. LVT151012

1. UNNODELED SEARCHES

arXiv:1602.03843

UNMODELED SEARCHES OVERVIEW

- Search for "bursts" of gravitational waves lasting 10⁻³-10s
- Make minimal assumptions about waveform morphology
- Not affected by uncertainties in waveform modeling
- Can detect wide range of signals, including BBHs

THREE SEARCHES PERFORMED ON DATA CONTAINING GW150914

1. Coherent Wave Burst (cWB) [1]

- Constructs coherent triggers between detectors using wavelet basis
- 2. Omicron-LALInference-Bursts (oLIB) [2]
 - Generates single-detector triggers using sine-Gaussians (omicron) with coherent followup (LALInference)
- 3. BayesWave [3]
 - Fits a superposition of sine-Gaussians to times identified by cWB
 - Number & parameters of sine-Gaussians determined by Bayesian model selection
 - 1. S. Klimenko et al., CQG 25:114029, 2008
 - 2. R. Lynch et al., arXiv:1511.05955

3. N. J. Cornish and T. B. Littenberg, CQG, 32(13):135012, 2015.

Uses a wavelet basis to search for excess energy in each detector

LSC+Virgo, PRL 116, 061102 (2016)

Uses a wavelet basis to search for excess energy in each detector

LSC+Virgo, PRL 116, 061102 (2016)

- Uses a wavelet basis to search for excess energy in each detector
- Energy in each time-frequency tile is added coherently between the detectors

LSC+Virgo, PRL 116, 061102 (2016)

- Uses a wavelet basis to search for excess energy in each detector
- Energy in each time-frequency tile is added coherently between the detectors
 - account for detector antenna patterns and time delays

- Uses a wavelet basis to search for excess energy in each detector
- Energy in each time-frequency tile is added coherently between the detectors
 - account for detector antenna patterns and time delays
- Clusters of tiles with coherent energy above baseline noise are identified

- Process is repeated using different time/frequency resolutions
- Clusters at different resolutions are combined to form triggers
- Triggers are analyzed coherently to reconstruct the signal morphology

CWB RANKING STATISTIC

A ranking statistic is constructed for each trigger:

$$\eta_c = E_c \sqrt{\frac{2}{E_c + E_n}}$$

- E_c = the coherent energy
- E_n = residual energy after reconstructed waveform subtracted from the data

Non-Gaussian Transients

- The detectors contain non-Gaussian noise transients
- Example: the "Blip glitch"
- Not correlated between detectors
- Increases rate of false alarms

Blip Glitch

CWB SEARCH CLASSES

- cWB defines 3 classes of triggers:
 - C1: blip glitch-like
 - C3: chirp-like
 - C2: everything else
- False alarm rate (FAR) estimated in each class
- Multiply FAR of events by 3 to account for classes

LSC+Virgo, arXiv:1602.03843

Background estimated by applying 1s time shifts between detectors & reanalyzing

cWB GW150914 Results

GW150914:

C3: > 4.6σ

C3 parameters
 not finalized
 prior to initial
 detection

• C2+C3: <mark>4.4</mark>σ

LSC+Virgo, PRL 116, 061102 (2016)

DISADVANTAGES OF UNMODELED SEARCHES

- Without model, large space of possible signals leads to heightened false alarm rate
- Not sensitive to signals that accumulate power over larger range of frequencies
 - Not a problem for GW150914
 - Lower sensitivity to lower-mass signals

2. NODELED SEARCHES

arXiv:1602.03839

MATCHED FILTERING

- Have a signal buried in some strain s
- Use a template waveform h to calculate the signal-to-noise ratio (SNR) ρ:

$$\rho = \frac{|\langle h|s\rangle|}{\sqrt{\langle h|h\rangle}} \qquad \langle a|b\rangle \equiv 4 \int_0^\infty \frac{\tilde{a}^*(f)\tilde{b}(f)}{S_n(f)} \mathrm{d}f$$

- By replacing h with $he^{-2\pi i ft}$ we construct $\rho(t)$
- Triggers are points where $\rho(t)$ is maximized

Courtesy A. Nitz

MATCHED FILTERING

- Have a signal buried in some strain s
- Use a template waveform h to calculate the signal-to-noise ratio (SNR) ρ:

$$\rho = \frac{|\langle h|s\rangle|}{\sqrt{\langle h|h\rangle}} \qquad \langle a|b\rangle \equiv 4 \int_0^\infty \frac{\tilde{a}^*(f)\tilde{b}(f)}{S_n(f)} \mathrm{d}f$$

- By replacing h with $he^{-2\pi i f t}$ we construct $\rho(t)$
- Triggers are points where $\rho(t)$ is maximized

Courtesy A. Nitz

ADVANTAGES & CHALLENGES OF MODELED SEARCH

- Constraining signal space decreases false alarm rate
- Can use signal-based vetoes to separate signals from transient noise
- Better sensitivity than unmodeled search
- Lose sensitivity if templates do not match signals
 - Need accurate waveform models
 - Parameters of template must be close to signal

TEMPLATE BANK

TEMPLATE BANK

We use a "bank" of templates to search for range in possible signal parameters

TEMPLATE BANK

- We use a "bank" of templates to search for range in possible signal parameters
- Desire template placement to be such that maximum loss in SNR to target signals (the mismatch) is < 3%</p>

Possible CBC parameters (#):

- Possible CBC parameters (#):
 - component masses m_1, m_2 (2)

- Possible CBC parameters (#):
 - component masses m_1 , m_2 (2)
 - dimensionless spins of components χ₁, χ₂ (6)

- Possible CBC parameters (#):
 - component masses m_1 , m_2 (2)
 - dimensionless spins of components χ₁, χ₂ (6)
 - Iocation & orientation (6)

- Possible CBC parameters (#):
 - component masses m_1 , m_2 (2)
 - dimensionless spins of components χ₁, χ₂ (6)
 - Iocation & orientation (6)

Precessing System

- Possible CBC parameters (#):
 - component masses m_1 , m_2 (2)
 - dimensionless spins of components χ₁, χ₂ (6)
 - Iocation & orientation (6)

Precessing System

14 Parameters*

*not including coalescence time t_{c_r} assuming circular orbit & 0 or negligible tidal deformation

- Possible CBC parameters (#):
 - component masses m_1 , m_2 (2)
 - dimensionless spins of components χ_1, χ_2 (X) (2)
 - Iocation & orientation (6)
 analytically maximized over for non-precession
- We consider non-precessing systems in our searches

Non-Precessing System

4 Parameters*

*not including coalescence time *t_c*, assuming circular orbit & 0 or negligible tidal deformation

THE BANK USED IN O1

- Targets:
 - Binary neutron stars (BNS)
 - Stellar-mass binary black holes (BBH)
 - Binaries containing a neutron star & a black hole (NSBH)

LSC+Virgo, arXiv:1602.03839

THE BANK USED IN O1

- We limit NS spin to $|\chi_{NS}| < 0.05$
- Is sensitive to NS with
 |χ_{NS}| < 0.4
- Assume BHs can have $m \ge 2 M_{\odot}$
- ▶ |_{Хвн}| < 0.9895

LSC+Virgo, arXiv:1602.03839

Two "offline" searches performed

- PyCBC [4]
 - Python based, frequency-domain matched filter workflow
 - Evolution of CBC pipeline used in Initial LIGO
- GstLAL [5]
 - gStreamer based, time-domain matched filter workflow
 - implements a different ranking statistic from PyCBC
 - 4. S. A. Usman et al., arXiv:1508.02357
 - 5. C. Messick et al., arXiv:1604.04324
PYCBC CHI-SQUARED TEST

 Divide template h into p frequency bins of equal power

PYCBC CHI-SQUARED TEST

- Divide template h into p frequency bins of equal power
- Filter each h_i with the data s
- If template matches signal, expect:

 $\langle h_i | s \rangle = \langle h | s \rangle / p$

Calculate:

$$\chi_r^2 = \frac{p}{2p-2} \frac{1}{\langle h|h\rangle} \sum_{i=1}^p \left| \langle h_i|s\rangle - \frac{\langle h|s\rangle}{p} \right|^2$$

PYCBC CHI-SQUARED TEST

LSC+Virgo, arXiv:1602.03839

REWEIGHTED SNR

COINCIDENCE TEST

- Apply a coincidence test to single-detector triggers
- Must be in same template & within ±15ms

Construct ranking statistic from reweighted SNR of coincident triggers:

$$\hat{\rho}_c = \sqrt{\hat{\rho}_H^2 + \hat{\rho}_L^2}$$

BACKGROUND ESTIMATE

Do time slides to estimate background rate of false alarms

• Perform all possible $\Delta t = 0.1$ slides; Ns ~ 10⁷ slides

$$\mathcal{F}(\hat{\rho}_c) \approx \frac{n_b(\hat{\rho}_c)}{N_S}; \quad \text{FAR}(\hat{\rho}_c) \approx \frac{n_b(\hat{\rho}_c)}{N_S T}$$

BACKGROUND ESTIMATE

Do time slides to estimate background rate of false alarms

• Perform all possible $\Delta t = 0.1$ slides; Ns ~ 10⁷ slides

$$\mathcal{F}(\hat{\rho}_c) \approx \frac{n_b(\hat{\rho}_c)}{N_S}; \quad \mathrm{FAR}(\hat{\rho}_c) \approx \frac{n_b(\hat{\rho}_c)}{N_S T} \qquad T = 16 \,\mathrm{days}$$

 $N_S \approx 10^7 \,\mathrm{slides}$

PYCBC GW150914 RESULTS

LSC+Virgo, PRL 116, 061102 (2016); LSC+Virgo, arXiv:1602.03839

UNCORRELATED VS CORRELATED SOURCES

- FAR estimate gives rate of chance coincidences from uncorrelated noise sources
- Use environmental sensors to investigate any correlated noise sources
- No other environmental influences could be found [6]

UNCORRELATED VS CORRELATED SOURCES

- FAR estimate gives rate of chance coincidences from uncorrelated noise sources
- Use environmental sensors to investigate any correlated noise sources
- No other environmental influences could be found [6]

GW150914 IS A GRAVITATIONAL WAVE.

3. PARAMETER ESTIMATION

arXiv:1602.03840

NEED FOR PE CODE

- Modeled searches are designed to identify times when a signal exists, estimate significance given non-Gaussian transients
- ▶ Discreetness of template bank ⇒ parameters of waveform not estimated accurately
- Need followup code

BAYES THEOREM

Probability that a waveform *h* with parameters $\vartheta = \{m_1, m_2, ...\}$ exists in data *s* is given by:

$$P(h[\vec{\vartheta}]|s) = \mathcal{L}(s|h[\vec{\vartheta}])P(h[\vec{\vartheta}]);$$

$$\mathcal{L}(s|h[\vec{\vartheta}]) = \text{``likelihood ratio''} \equiv \frac{P(s|h[\vartheta])}{P(s|0)}$$

In *N*_d detectors with stationary Gaussian noise:

$$\mathcal{L}(s_k | h_k[\vec{\vartheta}]) \propto \exp\left[-\frac{1}{2} \sum_{k=1}^{N_d} \left\langle h_k[\vec{\vartheta}] - s_k \mid h_k[\vec{\vartheta}] - s_k \right\rangle\right]$$

BAYES THEOREM

Probability that a waveform h with parameters $\vartheta = \{m_1, m_2, ...\}$ exists in data s is given by:

$$P(h[\vec{\vartheta}]|s) = \mathcal{L}(s|h[\vec{\vartheta}])P(h[\vec{\vartheta}]);$$

$$\mathcal{L}(s|h[\vec{\vartheta}]) = \text{``likelihood ratio''} \equiv \frac{P(s|h[\vartheta])}{P(s|0)}$$

In N_d detectors with stationary Gaussian noise:

$$\mathcal{L}(s_k | h_k[\vec{\vartheta}]) \propto \exp\left[-\frac{1}{2} \sum_{k=1}^{N_d} \left\langle h_k[\vec{\vartheta}] - s_k \mid h_k[\vec{\vartheta}] - s_k \right\rangle\right]$$

Matched-filter SNR = $\log \mathcal{L}$ maximized over phase & amplitude in single detector assuming non-precessing, dominant mode waveforms

MCMC & NESTED SAMPLING

- Use 2 independent stochastic sampling engines to evaluate *L* over multi-dimensional parameter space
 - Markov-chain Monte Carlo (MCMC) [7,8]
 - Nested sampling [9,10]
- Time and mass estimate from searches used to inform prior
 - > t_c : +/-0.1s uniform prior centered on searches' t_c
 - ▶ $m_{1,2}$: uniform prior \in [10,80] M_☉
 - C. Rover et al., CQG 23, 4895 (2006)
 M. van der Sluys et al., CQG 25, 184011(2008)

- 9. J. Skilling, Bayesian Analysis 1, 833 (2006)
- 10. J. Veitch & A. Vecchio, PRD 81, 062003 (2010)

WAVEFORM MODELS

- Two waveform models used
- "EOBNR": non-precessing spin model using effective-onebody (EOB) formalism tuned to numerical relativity (NR) (11 parameters) [11,12]
- "IMRPhenom": precessing waveform model derived from phenomenological fits of hybridized EOB & NR waveforms (13 parameters) [13,14]

A. Taracchini et al., PRD 89, 061502 (2014)
 M. Pürrer, CQG 31, 195010 (2014)

- 13. M. Hannam et al., PRL 113, 151101 (2014)
- 14. P. Schmidt Ph.D. Thesis (2014)

QUOTED VALUES

- Waveform models give consistent results for GW150914
 - nearly equal Bayes factors
- We average parameter estimates from both models ("Overall") & use them to estimate systematic errors
- Quoted parameter values are the median of the marginalized posterior distribution with symmetric 90% credible interval

GW150914 RESULTS: MASSES

Both components are BHs:

 $m_1^{\text{source}} = 36^{+5}_{-4} M_{\odot}$ $m_2^{\text{source}} = 29^{+4}_{-4} M_{\odot}$

Nearly equal mass:

 $0.65 \le m_2/m_1 \le 1$

GW150914 RESULTS: MASSES

Both components are BHs:

 $m_1^{\text{source}} = 36^{+5}_{-4} M_{\odot}$ $m_2^{\text{source}} = 29^{+4}_{-4} M_{\odot}$

GW150914 RESULTS: MASSES

Both components are BHs:

 $m_1^{\text{source}} = 36^{+5}_{-4} M_{\odot}$ $m_2^{\text{source}} = 29^{+4}_{-4} M_{\odot}$

Observed masses:

 $m_1^{\text{obs}} = 39^{+6}_{-4} M_{\odot}, \quad m_2^{\text{obs}} = 32^{+4}_{-5} M_{\odot}$

Source mass estimated using redshift:

$$m^{\text{source}} = m^{\text{obs}}/(1+z)$$

GW150914 RESULTS: DISTANCE

Luminosity distance:

 $D_{\rm L} = 410^{+160}_{-180} {\rm Mpc}$

Assuming flat ACDM cosmology*:

$$z = 0.09^{+0.03}_{-0.04}$$

- Inclination θ_{JN} = angle between total angular momentum J & line of sight
- Edge-on disfavored: only 35% chance $45^{\circ} < \theta_{JN} < 135^{\circ}$

 ${}^{*}H_{0} = 67.9 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$ $\Omega_{\mathrm{m}} = 0.306$

GW150914 RESULTS: SKY MAP

- With 2 detectors can only limit location to annulus on the sky
- 50% probability region: 140 deg²
- 90% probability region: 590 deg²
 - Co-moving volume: ~0.01Gpc³
- Co-moving MWEG density is 10⁷/Gpc³

GW150914 RESULTS: SPIN

Individual component spins not well constrained:

 $|\vec{\chi}_1| < 0.7, \quad |\vec{\chi}_2| < 0.9$

Dominant spin effect:

$$\chi_{\text{eff}} = \left[\frac{m_1 \vec{\chi}_1 + m_2 \vec{\chi}_2}{m_1 + m_2}\right] \cdot \mathbf{\hat{L}}$$

Effective precession parameter:

$$\chi_{\rm p} = \max \left[\chi_{1\perp}, \quad \frac{4q+3}{3q+4} q \chi_{2\perp} \right]; \quad q = m_2/m_1$$

> $\chi_p = 0$ for EOBNR model (no precession)

GW150914 RESULTS: SPIN

 $\chi_{\rm eff} = -0.06^{+0.17}_{-0.18}$

GW150914 RESULTS: SPIN

 $\chi_{\rm eff} = -0.06^{+0.17}_{-0.18}$

GW150914 RESULTS: FINAL MASS & SPIN

Use mass & spin estimates to infer final mass & spin of BH [15]:

$$M_{\rm f}^{\rm source} = 62^{+4}_{-4} {\rm M}_{\odot}$$
$$a_{\rm f} = 0.67^{+0.05}_{-0.07}$$

▶ 3.0±0.5 M_☉c² radiated in gravitational waves

LSC+Virgo, arXiv:1602.03840

15. J. Healy, C. O. Lousto, & Y. Zlochower, PRD 90, 104004 (2014)

4. LVT151012

PYCBC RESULTS

LSC+Virgo, PRL 116, 061102 (2016); LSC+Virgo, arXiv:1602.03839

PYCBC RESULTS

LSC+Virgo, PRL 116, 061102 (2016); LSC+Virgo, arXiv:1602.03839

Event	Time (UTC)	FAR (yr^{-1})	Ŧ	$\mathscr{M}\left(\mathrm{M}_{\odot} ight)$	$m_1~({ m M}_\odot)$	$m_2~({ m M}_\odot)$	Xeff	D_L (Mpc)
GW150914	14 September 2015 09:50:45	$< 5 \times 10^{-6}$	$< 2 \times 10^{-7}$ (> 5.1 σ)	28^{+2}_{-2}	36^{+5}_{-4}	29^{+4}_{-4}	$-0.07\substack{+0.16 \\ -0.17}$	410^{+160}_{-180}
LVT151012	12 October 2015 09:54:43	0.44	0.02 (2.1 σ)	15^{+1}_{-1}	23^{+18}_{-6}	13^{+4}_{-5}	$0.0\substack{+0.3 \\ -0.2}$	1100^{+500}_{-500}

Event	Time (UTC)	$FAR(yr^{-1})$	Ŧ	$\mathscr{M}\left(\mathrm{M}_{\odot} ight)$	$m_1~({ m M}_\odot)$	$m_2~({ m M}_\odot)$	Xeff	D_L (Mpc)
GW150914	14 September 2015 09:50:45	$< 5 imes 10^{-6}$	$< 2 \times 10^{-7}$ (> 5.1 σ)	28^{+2}_{-2}	36^{+5}_{-4}	29^{+4}_{-4}	$-0.07\substack{+0.16 \\ -0.17}$	410^{+160}_{-180}
LVT151012	12 October 2015 09:54:43	0.44	$0.02 \\ (2.1 \sigma)$	15^{+1}_{-1}	23^{+18}_{-6}	13^{+4}_{-5}	$0.0\substack{+0.3 \\ -0.2}$	1100^{+500}_{-500}

LSC+Virgo, arXiv:1602.03839

Not significant enough to claim as definitive event

Event	Time (UTC)	FAR (yr^{-1})	F	$\mathscr{M}\left(\mathrm{M}_{\odot} ight)$	$m_1~({ m M}_\odot)$	$m_2~({ m M}_\odot)$	Xeff	D_L (Mpc)
GW150914	14 September 2015 09:50:45	$< 5 \times 10^{-6}$	$< 2 \times 10^{-7}$ (> 5.1 σ)	28^{+2}_{-2}	36^{+5}_{-4}	29^{+4}_{-4}	$-0.07\substack{+0.16 \\ -0.17}$	410^{+160}_{-180}
LVT151012	12 October 2015 09:54:43	0.44	0.02 (2.1 σ)	15^{+1}_{-1}	23^{+18}_{-6}	13^{+4}_{-5}	$0.0\substack{+0.3 \\ -0.2}$	1100^{+500}_{-500}

LSC+Virgo, arXiv:1602.03839

Not significant enough to claim as definitive event

However...

Event	Time (UTC)	$FAR(yr^{-1})$	Ŧ	$\mathscr{M}\left(\mathrm{M}_{\odot} ight)$	$m_1~({ m M}_\odot)$	$m_2~({ m M}_\odot)$	$\chi_{ m eff}$	D_L (Mpc)
GW150914	14 September 2015 09:50:45	$< 5 imes 10^{-6}$	$< 2 \times 10^{-7}$ (> 5.1 σ)	28^{+2}_{-2}	36^{+5}_{-4}	29^{+4}_{-4}	$-0.07\substack{+0.16 \\ -0.17}$	410^{+160}_{-180}
LVT151012	12 October 2015 09:54:43	0.44	$0.02 \\ (2.1 \sigma)$	15^{+1}_{-1}	23^{+18}_{-6}	13^{+4}_{-5}	$0.0\substack{+0.3 \\ -0.2}$	1100^{+500}_{-500}

LSC+Virgo, arXiv:1602.03839

Not significant enough to claim as definitive event

However...

Parameter estimates consistent with population of BBH

Event	Time (UTC)	$FAR (yr^{-1})$	Ŧ	$\mathscr{M}\left(\mathrm{M}_{\odot} ight)$	$m_1~({ m M}_\odot)$	$m_2~({ m M}_\odot)$	Xeff	D_L (Mpc)
GW150914	14 September 2015 09:50:45	$< 5 imes 10^{-6}$	$< 2 \times 10^{-7}$ (> 5.1 σ)	28^{+2}_{-2}	36^{+5}_{-4}	29^{+4}_{-4}	$-0.07\substack{+0.16 \\ -0.17}$	410^{+160}_{-180}
LVT151012	12 October 2015 09:54:43	0.44	0.02 (2.1 σ)	15^{+1}_{-1}	23^{+18}_{-6}	13^{+4}_{-5}	$0.0\substack{+0.3 \\ -0.2}$	1100^{+500}_{-500}

LSC+Virgo, arXiv:1602.03839

Not significant enough to claim as definitive event

However...

- $\rho_{H1} = 6.9$ $\rho_{L1} = 6.7$ $\hat{\rho}_c = 9.6$
- Parameter estimates consistent with population of BBH
- Second most significant event in both PyCBC & GstLAL searches

PHASE/TIME CONSISTENCY

- Any phase difference & time delay < 10ms is possible between 2 detectors
- Due to antenna pattern of detectors, signals are more likely to have certain phase and time differences
- Noise has uniform distribution
- This is currently not included in modeled searches' detection statistic

Courtesy A. Nitz

PHASE/TIME CONSISTENCY

- Any phase difference & time delay < 10ms is possible between 2 detectors
- Due to antenna pattern of detectors, signals are more likely to have certain phase and time differences
- Noise has uniform distribution
- This is currently not included in modeled searches' detection statistic

Courtesy A. Nitz
PHASE/TIME CONSISTENCY

- Any phase difference & time delay < 10ms is possible between 2 detectors
- Due to antenna pattern of detectors, signals are more likely to have certain phase and time differences
- Noise has uniform distribution
- This is currently not included in modeled searches' detection statistic

Courtesy A. Nitz

CONCLUSIONS

GW150914

- Multiple pipelines & methods found GW150914 with high significance
- No other environmental sources could be found
- Parameter estimates indicate a BBH with little to no spin

LVT150914

• Detected by modeled searches with significance = 2.1σ

Consistent with BBH signal

GW150914 WAVEFORM CONSISTENCY

- Use parameter estimates to produce waveform estimate
- Excellent agreement with waveform reconstructed using minimal assumptions (BayesWave)

LSC+Virgo, arXiv:1602.03840

GW150914 PARAMETER ESTIMATES

	EOBNR	IMRPhenom	Overall
Detector-frame total mass M/M_{\odot}	$70.3^{+5.3}_{-4.8}$	$70.7^{+3.8}_{-4.0}$	$70.5^{+4.6\pm0.9}_{-4.5\pm1.0}$
Detector-frame chirp mass $\mathcal{M}/\mathrm{M}_{\odot}$	$30.2^{+2.5}_{-1.9}$	$30.5^{+1.7}_{-1.8}$	$30.3^{+2.1\pm0.4}_{-1.9\pm0.4}$
Detector-frame primary mass $m_1/{ m M}_{\odot}$	$39.4_{-4.9}^{+5.5}$	$38.3^{+5.5}_{-3.5}$	$38.8^{+5.6\pm0.9}_{-4.1\pm0.3}$
Detector-frame secondary mass $m_2/{ m M}_{\odot}$	$30.9^{+4.8}_{-4.4}$	$32.2^{+3.6}_{-5.0}$	$31.6^{+4.2\pm0.1}_{-4.9\pm0.6}$
Detector-frame final mass $M_{\rm f}/{ m M}_{\odot}$	$67.1^{+4.6}_{-4.4}$	$67.4_{-3.6}^{+3.4}$	$67.3^{+4.1\pm0.8}_{-4.0\pm0.9}$
Source-frame total mass $M^{\rm source}/{ m M}_{\odot}$	$65.0^{+5.0}_{-4.4}$	$64.6^{+4.1}_{-3.5}$	$64.8^{+4.6\pm1.0}_{-3.9\pm0.5}$
Source-frame chirp mass $\mathcal{M}^{\rm source}/{\rm M}_{\odot}$	$27.9^{+2.3}_{-1.8}$	$27.9^{+1.8}_{-1.6}$	$27.9^{+2.1\pm0.4}_{-1.7\pm0.2}$
Source-frame primary mass $m_1^{ m source}/{ m M}_{\odot}$	$36.3^{+5.3}_{-4.5}$	$35.1^{+5.2}_{-3.3}$	$35.7^{+5.4\pm1.1}_{-3.8\pm0.0}$
Source-frame secondary mass $m_2^{ m source}/{ m M}_{\odot}$	$28.6^{+4.4}_{-4.2}$	$29.5^{+3.3}_{-4.5}$	$29.1^{+3.8\pm0.2}_{-4.4\pm0.5}$
Source-fame final mass $M_{\rm f}^{\rm source}/{ m M}_{\odot}$	$62.0_{-4.0}^{+4.4}$	$61.6^{+3.7}_{-3.1}$	$61.8^{+4.2\pm0.9}_{-3.5\pm0.4}$
Mass ratio q	$0.79^{+0.18}_{-0.19}$	$0.84^{+0.14}_{-0.21}$	$0.82^{+0.16\pm0.01}_{-0.21\pm0.03}$
Effective inspiral spin parameter $\chi_{\rm eff}$	$-0.09^{+0.19}_{-0.17}$	$-0.03\substack{+0.14 \\ -0.15}$	$-0.06^{+0.17\pm0.01}_{-0.18\pm0.07}$
Dimensionless primary spin magnitude a_1	$0.32^{+0.45}_{-0.28}$	$0.31\substack{+0.51 \\ -0.27}$	$0.31^{+0.48\pm0.04}_{-0.28\pm0.01}$
Dimensionless secondary spin magnitude a_2	$0.57\substack{+0.40 \\ -0.51}$	$0.39\substack{+0.50\\-0.34}$	$0.46^{+0.48\pm0.07}_{-0.42\pm0.01}$
Final spin $a_{\rm f}$	$0.67\substack{+0.06 \\ -0.08}$	$0.67\substack{+0.05 \\ -0.05}$	$0.67^{+0.05\pm0.00}_{-0.07\pm0.03}$
Luminosity distance $D_{\rm L}/{ m Mpc}$	390^{+170}_{-180}	440^{+140}_{-180}	$410^{+160\pm20}_{-180\pm40}$
Source redshift z	$0.083\substack{+0.033\\-0.036}$	$0.093\substack{+0.028\\-0.036}$	$0.088^{+0.031\pm0.004}_{-0.038\pm0.009}$
Upper bound on primary spin magnitude a_1	0.65	0.71	0.69 ± 0.05
Upper bound on secondary spin magnitude a_2	0.93	0.81	0.88 ± 0.10
Lower bound on mass ratio q	0.64	0.67	0.65 ± 0.03
Log Bayes factor $\ln \mathcal{B}_{s/n}$	288.7 ± 0.2	290.1 ± 0.2	

INDEPENDENCE OF TIME SLIDES

LSC+Virgo, arXiv:1602.03839

THE BANK USED IN O1

- ► Component masses $\geq 1 M_{\odot}$
- Total mass $\leq 100 M_{\odot}$
 - Based on data quality concerns
 - stellar-mass BH ≥30M_☉
 uncertain prior to O1
- Work on-going to search for higher mass, IMBH signals

LSC+Virgo, arXiv:1602.03839