GW150914: Astrophysical implications of the discovery

"Was that you I heard just now, or was it two black holes colliding?"

Ilya Mandel University of Birmingham Hannover, 23 May 2016 PRL 116, 061102 (2016)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 12 FEBRUARY 2016

G

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21} . It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1σ . The source lies at a luminosity distance of 410^{+160}_{-180} Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4}M_{\odot}$ and $29^{+4}_{-4}M_{\odot}$, and the final black hole mass is $62^{+4}_{-4}M_{\odot}$, with $3.0^{+0.5}_{-0.5}M_{\odot}c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

DOI: 10.1103/PhysRevLett.116.061102

- LIGO-P1500229: Observing gravitational-wave transient GW150914 with minimal assumptions
- LIGO-P1500269: <u>GW150914</u>: First results from the search for binary black hole coalescence with Advanced LIGO
- LIGO-P1500218: Properties of the binary black hole merger GW150914
- LIGO-P1500217: <u>The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations</u> <u>Surrounding GW150914</u>
- LIGO-P1500262: <u>Astrophysical Implications of the Binary Black-Hole Merger GW150914</u>
- LIGO-P1500213: <u>Tests of general relativity with GW150914</u>
- LIGO-P1500222: <u>GW150914</u>: Implications for the stochastic gravitational-wave background from binary black holes
- LIGO-P1500248: <u>Calibration of the Advanced LIGO detectors for the discovery of the binary blackhole merger GW150914</u>
- LIGO-P1500238: Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914
- LIGO-P1500227: Localization and broadband follow-up of the gravitational-wave candidate G184098
- LIGO-P1500271: <u>High-energy Neutrino follow-up search of Gravitational Wave Event GW150914</u> with IceCube and ANTARES
- LIGO-P1500237: <u>GW150914: The Advanced LIGO Detectors in the Era of First Discoveries</u>

THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914

B. P. ABBOTT,¹ R. ABBOTT,¹ T. D. ABBOTT,² M. R. ABERNATHY,¹ F. ACERNESE,^{3,4} K. ACKLEY,⁵ C. ADAMS,⁶
T. ADAMS,⁷ P. ADDESSO,³ R. X. ADHIKARI,¹ V. B. ADYA,⁸ C. AFFELDT,⁸ M. AGATHOS,⁹ K. AGATSUMA,⁹ N. AGGARWAL,¹⁰
O. D. AGUIAR,¹¹ L. AIELLO,^{12,13} A. AIN,¹⁴ P. AJITH,¹⁵ B. ALLEN,^{8,16,17} A. ALLOCCA,^{18,19} P. A. ALTIN,²⁰ S. B. ANDERSON,¹
W. G. ANDERSON,¹⁶ K. ARAI,¹ M. C. ARAYA,¹ C. C. ARCENEAUX,²¹ J. S. AREEDA,²² N. ARNAUD,²³ K. G. ARUN,²⁴
S. ASCENZI,^{25,13} G. ASHTON,²⁶ M. AST,²⁷ S. M. ASTON,⁶ P. ASTONE,²⁸ P. AUFMUTH,⁸ C. AULBERT,⁸ S. BABAK,²⁹
P. BACON,³⁰ M. K. M. BADER,⁹ P. T. BAKER,³¹ F. BALDACCINI,^{32,33} G. BALLARDIN,³⁴ S. W. BALLMER,³⁵
J. C. BARAYOGA,¹ S. E. BARCLAY,³⁶ B. C. BARISH,¹ D. BARKER,³⁷ F. BARONE,^{3,4} B. BARR,³⁶ L. BARSOTTI,¹⁰
M. BARSUGLIA,³⁰ D. BARTA,³⁸ J. BARTLETT,³⁷ I. BARTOS,³⁹ R. BASSIRI,⁴⁰ A. BASTI,^{18,19} J. C. BATCH,³⁷ C. BAUNE,⁸
V. BAVIGADDA,³⁴ M. BAZZAN,^{41,42} B. BEHNKE,²⁹ M. BEJGER,⁴³ A. S. BELL,³⁶ C. J. BELL,³⁶ B. K. BERGER,¹

J. L. WRIGHT,³⁶ G. WU,⁶ J. YABLON,⁸² W. YAM,¹⁰ H. YAMAMOTO,¹ C. C. YANCEY,⁶² M. J. YAP,²⁰ H. YU,¹⁰ M. YVERT,⁷ A. ZADROŻNY,¹¹⁰ L. ZANGRANDO,⁴² M. ZANOLIN,⁹⁷ J.-P. ZENDRI,⁴² M. ZEVIN,⁸² F. ZHANG,¹⁰ L. ZHANG,¹ M. ZHANG,¹¹⁹ Y. ZHANG,¹¹² C. ZHAO,⁵⁰ M. ZHOU,⁸² Z. ZHOU,⁸² X. J. ZHU,⁵⁰ M. E. ZUCKER,^{1,10} S. E. ZURAW,¹⁰¹ AND J. ZWEIZIG¹ [†]Deceased, May 2015. [‡]Deceased, March 2015.

(LIGO Scientific Collaboration and Virgo Collaboration)

ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK-HOLE MERGER GW150914

B. P. ABBOTT,¹ R. ABBOTT,¹ T. D. ABBOTT,² M. R. ABERNATHY,¹ F. ACERNESE,^{3,4} K. ACKLEY,⁵ C. ADAMS,⁶ T. ADAMS,⁷ P. ADDESSO,³ R. X. ADHIKARI,¹ V. B. ADYA,⁸ C. AFFELDT,⁸ M. AGATHOS,⁹ K. AGATSUMA,⁹ N. AGGARWAL,¹⁰ O. D. AGUIAR,¹¹ L. AIELLO,^{12,13} A. AIN,¹⁴ P. AJITH,¹⁵ B. ALLEN,^{8,16,17} A. ALLOCCA,^{18,19} P. A. ALTIN,²⁰ S. B. ANDERSON,¹ W. G. ANDERSON,¹⁶ K. ARAI,¹ M. C. ARAYA,¹ C. C. ARCENEAUX,²¹ J. S. AREEDA,²² N. ARNAUD,²³ K. G. ARUN,²⁴ S. ASCENZI,^{25,13} G. ASHTON,²⁶ M. AST,²⁷ S. M. ASTON,⁶ P. ASTONE,²⁸ P. AUFMUTH,⁸ C. AULBERT,⁸ S. BABAK,²⁹ P. BACON,³⁰ M. K. M. BADER,⁹ P. T. BAKER,³¹ F. BALDACCINI,^{32,33} G. BALLARDIN,³⁴ S. W. BALLMER,³⁵ J. C. BARAYOGA,¹ S. E. BARCLAY,³⁶ B. C. BARISH,¹ D. BARKER,³⁷

Properties of GW150914

Properties of GW150914

$$--- Prior cS_1/(Gm_1^2) 0^{\circ} 0^{\circ}$$

	EOBNR	IMRPhenom	Overall
Detector-frame total mass M/M_{\odot}	$70.3^{+5.3}_{-4.8}$	$70.7^{+3.8}_{-4.0}$	$70.5^{+4.6\pm0.9}_{-4.5\pm1.0}$
Detector-frame chirp mass M/M_{\odot}	$30.2^{+2.5}_{-1.9}$	$30.5^{+1.7}_{-1.8}$	$30.3^{+2.1\pm0.4}_{-1.9\pm0.4}$
Detector-frame primary mass m_1/M_{\odot}	$39.4^{+5.5}_{-4.9}$	$38.3^{+5.5}_{-3.5}$	$38.8^{+5.6\pm0.9}_{-4.1\pm0.3}$
Detector-frame secondary mass m_2/M_{\odot}	$30.9^{+4.8}_{-4.4}$	$32.2^{+3.6}_{-5.0}$	$31.6^{+4.2\pm0.1}_{-4.9\pm0.6}$
Detector-frame final mass $M_{\rm f}/{\rm M}_{\odot}$	$67.1_{-4.4}^{+4.6}$	$67.4^{+3.4}_{-3.6}$	$67.3^{+4.1\pm0.8}_{-4.0\pm0.9}$
Source-frame total mass $M^{\rm source}/M_{\odot}$	$65.0^{+5.0}_{-4.4}$	$64.6^{+4.1}_{-3.5}$	$64.8^{+4.6\pm1.0}_{-3.9\pm0.5}$
Source-frame chirp mass $\mathcal{M}^{\rm source}/M_{\odot}$	$27.9^{+2.3}_{-1.8}$	$27.9^{+1.8}_{-1.6}$	$27.9^{+2.1\pm0.4}_{-1.7\pm0.2}$
Source-frame primary mass $m_1^{\rm source}/{ m M}_{\odot}$	$36.3^{+5.3}_{-4.5}$	$35.1^{+5.2}_{-3.3}$	$35.7^{+5.4\pm1.1}_{-3.8\pm0.0}$
Source-frame secondary mass $m_2^{\rm source}/{ m M}_{\odot}$	$28.6^{+4.4}_{-4.2}$	$29.5^{+3.3}_{-4.5}$	$29.1^{+3.8\pm0.2}_{-4.4\pm0.5}$
Source-fame final mass $M_{\rm f}^{\rm source}/{ m M}_{\odot}$	$62.0_{-4.0}^{+4.4}$	$61.6^{+3.7}_{-3.1}$	${}^{61.8 + 4.2 \pm 0.9}_{-3.5 \pm 0.4}$
Mass ratio q	$0.79\substack{+0.18\\-0.19}$	$0.84\substack{+0.14\\-0.21}$	$0.82^{+0.16\pm0.01}_{-0.21\pm0.03}$
Effective inspiral spin parameter χ_{eff}	$-0.09\substack{+0.19\\-0.17}$	$-0.03\substack{+0.14 \\ -0.15}$	$-0.06^{+0.17\pm0.01}_{-0.18\pm0.07}$
Dimensionless primary spin magnitude a_1	$0.32^{+0.45}_{-0.28}$	$0.31\substack{+0.51\\-0.27}$	$0.31^{+0.48\pm0.04}_{-0.28\pm0.01}$
Dimensionless secondary spin magnitude a_2	$0.57\substack{+0.40\\-0.51}$	$0.39\substack{+0.50\\-0.34}$	$0.46^{+0.48\pm0.07}_{-0.42\pm0.01}$
Final spin $a_{\rm f}$	$0.67\substack{+0.06\\-0.08}$	$0.67\substack{+0.05\\-0.05}$	$0.67^{+0.05\pm0.00}_{-0.07\pm0.03}$
Luminosity distance $D_{\rm L}/{ m Mpc}$	390^{+170}_{-180}	440^{+140}_{-180}	$410^{+160\pm20}_{-180\pm40}$
Source redshift z	$0.083\substack{+0.033\\-0.036}$	$0.093^{+0.028}_{-0.036}$	$0.088^{+0.031\pm0.004}_{-0.038\pm0.009}$
Upper bound on primary spin magnitude a_1	0.65	0.71	0.69 ± 0.05
Upper bound on secondary spin magnitude a_2	0.93	0.81	0.88 ± 0.10
Lower bound on mass ratio q	0.64	0.67	0.65 ± 0.03
Log Bayes factor $\ln B_{s/n}$	288.7 ± 0.2	290.1 ± 0.2	_

 $13.6^{+0.5}_{-0.4} \times 10^{56} \text{ erg s}^{-1} = 200^{+30}_{-20} \text{ M}_{\odot}c^2/\text{s}^{-1}$

Rates: trigger number density

x'

Counting and confusion

Globular cluster on top of a galactic background with a gradient [Farr, Gair, Mandel, Cutler, 2015, PRD 91, 023005]

Trouble distinguishing foreground and background signals

Counting and confusion, II

- Allow each "event" to be assigned to foreground or background.
- Parameterize the foreground and background distributions as you wish.
- MCMC over distribution parameters and fore/back status of each event.

$$p\left(\left\{g_{i}\right\}, R_{f}, R_{b}, \theta | d_{to}, N\right) = \frac{\alpha}{p(d_{to}, N) N!}$$

$$\times \left[\prod_{\{i | g_{i} = 1\}} R_{f} \hat{f}\left(x_{i}, \theta\right)\right] \left[\prod_{\{i | g_{i} = 0\}} R_{b} \hat{b}\left(x_{i}, \theta\right)\right]$$

$$\times \exp\left[-\left(R_{f} + R_{b}\right)\right] \frac{p(\theta)}{\sqrt{R_{f} R_{b}}}.$$

Counting and confusion, III

Rates: candidate events

Rates: population assumptions

Advanced detector timelines

	Estimated	$E_{\rm GW} = 10^{-2} M_{\odot} c^2$				Number	% BNS Localized	
	Run	Burst Range (Mpc)		BNS Range (Mpc)		of BNS	within	
Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections	$5 \mathrm{deg}^2$	$20{ m deg}^2$
2015	3 months	40 - 60	-	40 - 80	—	0.0004 - 3	-	-
2016 - 17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20	2	5 - 12
2017 - 18	9 months	75 - 90	40 - 50	120 - 170	60 - 85	0.04 - 100	1 - 2	10 - 12
2019 +	(per year)	105	40 - 80	200	65 - 130	0.2 - 200	3 - 8	8 - 28
2022+ (India)	(per year)	105	80	200	130	0.4 - 400	17	48

[Aasi+ (LSC+Virgo), arXiv:1304.0670]

Rates: Future expectations

Rates vs. past predictions

TABLE IV: Compact binary coalescence rates per Mpc³ per Myr.^a

Source	$R_{ m low}$	$R_{ m re}$	$R_{ m high}$	$R_{ m max}$
NS-NS $(Mpc^{-3} Myr^{-1})$	0.01 [1]	1 [1]	10 [1]	50 [16]
NS-BH $(Mpc^{-3} Myr^{-1})$	6×10^{-4} [18]	0.03[18]	1 [18]	
BH-BH $(Mpc^{-3} Myr^{-1})$	1×10^{-4} [14]	0.005 [14]	0.3[14]	

[Abadie et al., CQG 27:173001,2010]

Rates vs. predictions

Rates vs. predictions

Key lessons learned

1. BBHs exist

First prediction

ЭВОЛЮЦИЯ МАССИВНЫХ ТЕСНЫХ ДВОЙНЫХ СИСТЕМ

А.В. Тутуков, Л.Р. Юнгельсон

После выгорания ядерного горючего в ядре WR, она взрывается, теряя часть массы. Остаток – релятивистский объект имеет массу – $\beta \propto (2-\propto)^{1.4} M$. Поскольку мы не знаем зависимости β от массы, мы принимаем β для первой и второй WR одинаковыми, дальнейшие оценки подтверждают это приближение. Рассмотрим вопрос о распаде системы WR + R в момент взрыва компоненты WR, Конечно, в принципе возможно, что на предшествующих стадиях эволюции обе звезды потеряют большую часть массы, и коллапс не будет сопровождаться большой потерей вещества. Система останется связанной, и можно будет получить системы типа пульсар + пульсар или коллапсар + коллапсар. Но изучение обнаруженных пульсаров не дает ни одного примера двойственности, поэтому такую возможность следует считать маловероятной, по крайней мере, для большинства систем.

Key lessons learned

- 1. BBHs exist
- 2. Merging BBHs exist

How do you get a BBH to merge?

- A. Isolated binary evolves and merges through GW emission
- B. Dynamical processes form the binary and/or help it harden

Isolated binary

Belczynski+, arXiv:1602.04531

see also Eldridge & Stanway, arXiv:1602.03790; Inayoshi+, arXiv:1603.06921

Dynamical Formation

- BH-BH mergers in dense black-hole subclusters of globular clusters
 - » [e.g., O'Leary, O'Shaughnessy, Rasio, 2007 PRD 76 061504; Downing et al., 2011 MNRAS 416 133; Bannerjee et al., 2010 MNRAS 402 371, Morscher et al., 2013 ApJL 763 L15, 2015 ApJ 800 9; Rodriguez et al. arXiv:1505.00792]
- BH-BH scattering in galactic nuclei with a density cusp caused by a massive black hole (MBH)
 - » [O'Leary, Kocsis, Loeb, 2009 arXiv:0807.2638; Tsang, 2014 ApJ 777 103] for more conservative estimate]
- BH-BH mergers in nuclei without an MBH

» [Miller and Lauburg, 2009, ApJ 692 917]

- Intermediate-mass-ratio inspirals of compact objects into intermediatemass black holes in globular clusters; 3-body interactions tighten IMBH-CO binary [Mandel et al., 2008 ApJ 681 1431]
- Still no confident IMBH detections... but recent detection of very massive (several hundred solar masses) stars [e.g., Crowther et al., 2010 MNRAS L11]
 - » Direct formation of IMBH binaries? [Belczynski et al., 2014 ApJ 789 120]

Rodriguez, Haster+, arXiv:1604.04254

see also Mapelli, arXiv:1604.03559

Chemically homogeneous evolution?

Mandel & de Mink, arXiv:1601.00007, MNRAS

see also Marchant+, arXiv:1601.03718, A&A; de Mink & Mandel, arXiv:1603.02291, MNRAS

Chemically homogeneous evolution

see mock catalogs at http://www.sr.bham.ac.uk/~imandel/CaseM/

Chemically homogeneous evolution

de Mink & Mandel, arXiv:1603.02291, MNRAS

Chemically homogeneous evolution

Key lessons learned

- 1. BBHs exist
- 2. Merging BBHs exist
- 3. Stellar-mass BHs with mass above 30 solar masses exist (and take part in mergers)

BH mass distribution

Metallicity and winds

adapted from Belczynski+, 2010 adopted from Spera+, 2016

Stochastic background

GW150914: Implications for the stochastic gravitational-wave background from binary black holes

[but see, e.g., Callister+, arXiv:arXiv:1604.02513]

Key lessons learned

- 1. BBHs exist
- 2. Merging BBHs exist
- 3. Stellar-mass BHs with mass above 30 solar masses exist (and take part in mergers)
- 4. Don't know formation channel from single event isolated binary with CE? chemically homogeneous evolution? dynamical formation?
- 5. Likely formed in low metallicity environment (either locally, or at high z with long time delay)
- Primary has spin of <0.7 at 90% confidence; no evidence for spins being both large and strongly aligned

Inverse problem of gravitational-wave astrophysics

- Unmodeled approach:
 - Searching for clusters in observable parameter space
- Modeled approach
 - Compare observed rates and distributions against model predictions
 - Requires building a catalog of models which explore a broad hyper-parameter space (e.g., common-envelope physics, BH natal kicks, etc.), interpolating, comparing to reconstructed source population

Clustering on observations

[Mandel+, 2015, MNRAS Letters, arXiv:1503.03172]

Clustering on observations

Model comparison

[Stevenson+, arXiv:1504.07802; based on data from Dominik+, 2012 see syntheticuniverse.org]

fraction

Model comparison

Compact Object Mergers: Population Assembly Statistics

EVENT: BLACK HOLE MERGER IN CARINA (30 M_{\odot} , 30 M_{\odot}) EVENT: ZORLAX THE MIGHTY WOULD LIKE TO CONNECT ON LINKEDIN EVENT: BLACK HOLE MERGER IN ORION (20 M_{\odot} , 50 M_{\odot}) EVENT: MORTGAGE OFFER FROM TRIANGULUM GALAXY EVENT: ZORLAX THE MIGHTY WOULD LIKE TO CONNECT ON LINKEDIN EVENT: MEET LONELY SINGLES IN THE LOCAL GROUP TONIGHT!

