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Boosted Three-Dimensional Black-Hole Evolutions with Singularity Excision

The accurate computational modeling of black-hole
interactions 1s essential to the confident detection of
astrophysical gravitational radiation by future space-based
detectors such as LISA and by the LIGO/VIRGO/GEO
complex of ground-based detectors currently under
construction. The sensitivity of these detectors will be
significantly enhanced 1f accurate computer simulations
of black-hole mergers can produce predictions of radia-
tion waveforms [1]. The Binary Black Hole Grand
Challenge Alliance [2] was funded in September 1993
to develop the computational infrastructure for accurate
simulations of the coalescence of black-hole binaries.
The primary objective of the resulting code will be the
prediction of waveforms from binary black-hole mergers.
In this Letter we report on an important step towards
achieving such simulations.
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singularities
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“punctures’”




Gauge
conditions




Gauge
conditions



Gauge
conditions



Initial
conditions




Initial

conditions

1 \l
-
-
—

T
AN




VOLUME 80, NUMBER 12 PHYSICAL REVIEW LETTERS 23 MARCH 1998

Boosted Three-Dimensional Black-Hole Evolutions with Singularity Excision

The accurate computational modeling of black-hole
interactions 1s essential to the confident detection of
astrophysical gravitational radiation by future space-based
detectors such as LISA and by the LIGO/VIRGO/GEO
complex of ground-based detectors currently under
construction. The sensitivity of these detectors will be
significantly enhanced 1f accurate computer simulations
of black-hole mergers can produce predictions of radia-
tion waveforms [1]. The Binary Black Hole Grand
Challenge Alliance [2] was funded in September 1993
to develop the computational infrastructure for accurate
simulations of the coalescence of black-hole binaries.
The primary objective of the resulting code will be the
prediction of waveforms from binary black-hole mergers.
In this Letter we report on an important step towards
achieving such simulations.




VOLUME 80, NUMBER 12 PHYSICAL REVIEW LETTERS 23 MARCH 1998

Boosted Three-Dimensional Black-Hole Evolutions with Singularity Excision

Binary black-hole interactions provide potentially the strongest source of gravitational radiation
for detectors currently under development. We present some results from the Binary Black Hole
Grand Challenge Alliance three-dimensional Cauchy evolution module. These constitute essential steps
towards modeling such interactions and predicting gravitational radiation waveforms. We report on
single black-hole evolutions and the first successful demonstration of a black hole moving freely through
a three-dimensional computational grid via a Cauchy evolution: a hole moving near 6M at 0.1¢ during
a total evolution of duration near 60M. [S0031-9007(98)05652-X]




2005: Breakthrough!

Pretorius (July): Generalised harmonic formalism

NASA-Goddard and Brownsville-Texas (November):
moving-puncture method.
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Waveform modelling
and
black-hole
measurements



Masses: m;, m>
Spins: Sy, S

(8 parameters)

useful combinations:
M=m; +my
qg=mz/ m
N =mj; my /[ M?
y =S/m?

Plus: distance, sky location,

orientation, polarisation






Amplitude:

Optimally oriented
(face on)

Signal shape is independent of orientation

Key information is in the phasing






Mass measurements
(non-spinning)

- Aml, Mo ~ 20% f

(SNR = 10)




Aligned spins







What is “y " ?

¥ is a weighted sum of the two spins

¥ is the dominant spin effect on the phasing

The individual spins have only a weak effect



(50-solar-mass, equal spins)




(50-solar-mass, equal spins)
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Phenom EOB-NR

(frequency domain) (time domain)
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® (a) PN-based ansatz ® (a) EOB + terms tuned to NR

® (b) phenomenological fit waveforms

(based on NR behaviour)

® (c) FFT of ringdown ,
waveform (Lorentzian) ® Includes both spins

® (b) Smooth transition to ringdown

® Analytic: fast ® Numerically solve ODEs: slow

® Speed-up: Reduced-order models
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Orbital precession

Newtonian gravity:
L, Si, S2 remain fixed



Orbital precession

General relativity
(L, S1,S2) precess around |



Precessional dynamics

Large separation




Aside: modelling precession

Precessing waveform =
(non-precessing waveform)

X (time dependent rotation)



(q=3 precessing binary, inclination 2.8 rad)
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(q=3 precessing binary, inclination 2.8 rad)
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(q=3 precessing binary, inclination 2.8 rad)
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For non-precessing binaries spin effects
dominated by only one key spin parameter

Does something similar happen for precession?
.e., can we replace
the four in-plane spin components
with one “precession spin’’?

Yes!



PhenomP

® Non-precessing model: PhenomD
® Twist with (analytic) PN precession angles

® Approximation: use PN angles through ringdown.




SEOBNRV3

Non-precessing model: inspiral part of SEOBNRv2
Twist with solution of precessing-EOB dynamics
Attach ringdown

Includes all 6 spin components

g=5, 1S11/m3=0.5, 1S,|/m3=0
precessing
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Neither precessing model
is tuned to
precessing NR simulations!



Orientation dependence

g=3, |S2| = 0.75 (in plane)

Observer aligned
with |




Orientation dependence

g=3, |S2| = 0.75 (in plane)

Observer aligned
with |
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Equal-mass nonspinning BBH
consistent with GW 150914
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Unequal-mass precessing BBH
consistent with GW 150914




Non-precessing

“Face-on”
to the
source Precessing




Non-precessing

“Edge-on”
to the
source Precessing




—  Qverall
— |IMRPhenom
— EOBNR

—  Prior
—  |MRPhenom

1
I | | |
30° 60° 90° 120° 150° 180° 000 025 050 0.75 1.00
Ov]‘\' Xp




NR simulations around
GWI150914



Inspiral Merger Ring-
down
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Numerical relativity
Reconstructed (template)
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Waveform model
systematics
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Local modelling

Several hundred NR simulations performed
Cross-check of parameter estimates
Reduced-order-quadrature model

PhenomP tuned through merger



Future observations

® SNR 25 at the accuracy limit of current models
® GWI50914 was in the best-modelled region
® Better models need

® Higher harmonics

® Precession physics through merger

® More accuracy (!)

® BUT: degeneracies will not evaporate!



