Neutron-star mergers: Predictions by numerical relativity

Masaru Shibata Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University

Many people are exploring NS binaries in numerical relativity

- Shibata & Uryu (1999), Taniguchi
- Sekiguchi, Kiuchi, Kyutoku, Hotokezaka, Kawaguchi
- Rezzolla, Baiotti, Giacomazzo, Kastaun, Alic, Ciolfi, ..
- Shapiro, Liu, Etienne, Pachalidis, ..
- Bernuzzi, Dietrich, Nagar, Bruegmann, Gold, ..
- Lehner, Palenzuele, Liebling, Nielsen, Anderson, ..
- Bauswein, Stergioulas, Janka, ..
- Foucart, Duez, O'Connor, Ott, Haas, Scheel, Kidder, Pfeiffer,..
- Loeffler and his colleagues & many others

• Solid progress on understanding NS-NS/ NS-BH binary by numerical relativity

Outline

- **1. Brief introduction**
- 2. Standard scenarios of NS-mergers
- 3. Gravitational waves and equations of state
- 4. Mass ejection
- **5. R-process nucleosynthesis**
- 6. Summary

1 Many aspects of NS-NS/BH-NS

- 1. One of the most promising sources of gravitational waves for LIGO/VIRGO/KAGRA
- 2. Laboratory for high-density nuclear matter
- 3. Promising progenitors of short-hard GRBs
- 4. Possible site of r-process nucleosynthesis
- 5. Laboratory for testing GR

Golc Gravitational-wave obs. + EM signals obs. + Numerical relativity will contribute to exploring all these issues

2 Standard scenarios of NS-NS/BH-NS merger

2A Binary neutron stars

Boundary conditions from latest observations

- ♦ Binary pulsar observations suggest
- > Mass of NS in compact NS-NS is likely to be in a narrow range, $m \approx 1.35\pm0.15 M_{sun}$
- > Spin of NS is likely to be not very high, $P_{\rm rot} > \sim 10 \,\mathrm{ms}$ or $a < \sim 0.05$
- ➢ NS radius (EOS) is still uncertain, but maximum mass of NS > 2 M_{sun} (Demorest 2010; Antoniadis 2013)
 → EOS of NS has to be stiff

All EOSs satisfy $M_{\rm max} > 2M_{\rm sun}$

H4: *R*=13.6km

MS1: *R*=14.5km

Possible outcomes of NS-NS mergers

I.e., irrespective of EOS, threshold mass $> 2.8 M_{sun}$

2B Black hole-neutron star binaries

Two possibilities: Tidal disruption or not

For tidal disruption, (Self gravity of NS) < (BH tidal force)

↓

$$\frac{M_{\rm NS}}{R_{\rm NS}^2} < C \frac{M_{\rm BH} R_{\rm NS}}{r^3} \ (C > 1) \Rightarrow 1 \le C \left(\frac{M_{\rm BH}}{r_{\rm ISCO}}\right)^3 \left(\frac{M_{\rm NS}}{M_{\rm BH}}\right)^2 \left(\frac{R_{\rm NS}}{M_{\rm NS}}\right)^3$$

- For tidal disruption
 Large NS Radius or
- ✤ Small BH mass or
- **↔**<u>High corotation spin</u>
 - is necessary

BH-NS with aligned **BH** spin

For tidal disruption of plausible BH-NS with $M_{\rm NS}$ =1.35 $M_{\rm sun}$, $R_{\rm NS}$ ~ 12 km, & $M_{\rm BH}$ > 6 $M_{\rm sun}$ High BH spin is necessary > ~0.75

Foucart et al. (2013, 2014); Kyutoku et al. (2015)

If high-mass BH, 20–30 solar mass, is standard, tidal disruption is not very likely:Only quite high-spin BH can tidally disrupt NS.

3 Gravitational waves& equations of state

Gravitational waveform from NS-NS: hybrid waveform (1.35-1.35 solar mass)

Clear correlation between peak and radius

Caveat

- Merger waveforms have been computed in quite simple setting (essentially, pure hydro)
- Post-merger phase would be in reality determined by complicated physics
- **Turbulence** will be excited by MHD instability (e.g., **Kelivin-Helmholtz instability**, **MRI**; Kiuchi's talk)
- \rightarrow Magnetic fields would be amplified to ~ 10¹⁶ G
- → Turbulent viscosity could change velocity profile, modifying waveform ?? (but no detailed simulation)

3B BH-NS: Signal of tidal disruption

BH-NS Fourier spectrum

Data analysis using numerical-relativity data: ET level (or nearby event) is necessary

4 Mass ejection

In binary merger, neutron-rich matter is ejected and it could shine (Piran's talk)
→ NR should clarify the ejecta properties

For radioactive (macronova) scenario (Li-Paczynski '98)

 $3 \times 10^{41} \text{ ergs/s} \Leftrightarrow M = -15.0 \text{ mag} \Rightarrow m = 21.5 \text{ mag} @ 200 \text{Mpc}$

Bright in near-infrared for 1 week after the merger

Expected light curves @ 200Mpc

Tanaka & Hotoke 2013; see also Barnes & Kasen 2013, 2016

Neutrino-radiation hydrodynamics simulation SFHo (R~11.9 km): 1.35-1.35 M_{sun} Rest-mass density

Sekiguchi et al. 2015

Anisotropic ejection along the orbital plane: Note: Disk wind is not taken into account.

Kyutoku et al. 2015

Dynamical ejecta properties in numerical relativity

- Mass:
- <u>NS-NS</u>: ~10⁻³—0.02 M_{sun} depending on each mass & EOS: Soft EOS is favorable (Hotoke+ 13, Sekiguchi+ 15,16, Radice+ 16, Lehner+ 15,16)
- BH-NS: 0—0.1 M_{sun} depending on each mass, BH spin, & EOS: Stiff EOS is favorable; high BH spin is also the key (Foucart+13,14, Kyutoku+15)
- > Typical velocity: 0.15-0.25 c; max ~ 0.8 c

Detectable for macronova from NS-NS by 8-m class telescopes

Other effects ?

R-process nucleosynthesis

Importance of Y_e=[p]/([p]+[n]) in r-process

• $Y_e \sim 0.2-0.25$ is critical threshold

 $-Y_e < 0.22$: strong r-process \Rightarrow nuclei with A > 130

 $-Y_e > 0.22$: weak r-process \Rightarrow nuclei with A < 130

Sekiguchi et al. (2015)

Dynamical evolution of neutron richness

Average depends on EOS but typically 0.2-0.3
 Broad distribution irrespective of EOS
 Similar results by Radice+16, Lehner+15,16

Results for a variety of mass ratios

BH-NS merger (DD2 EOS: Y_e) M_{BH} =5.5M_{sun}, M_{NS} =1.35M_{sun}, a_{BH} =0.75

Kyutoku, Sekiguchi + 2016

Still many issues remain

- MHD/Viscous wind from torus?
- How large is the effective viscosity?
- → High-resolution & better physics is necessary

Issues in numerical relativity in the next ~ a few years

• Neutrino wind alone is likely to be minor effect (Sekiguchi+2015)

5 Summary

- Many NR simulations are ongoing for NS-NS/BH
 → "Standard scenarios" have been established.
- Detecting late-inspiral gravitational waves from NS-NS will constrain EOS for $D_{\rm eff} <\sim 200 {\rm Mpc}$.
- Ejecta mass: ~0.001–0.02 M_{sun} for NS-NS, and up to 0.1 M_{sun} for BH-NS: depends on NS-EOS: $\rightarrow L \sim 10^{40-42}$ erg/s at 1—10 days for radioactivepower nova (for $\kappa \sim 10 \text{ cm}^2/\text{g}$).
 - → EM counterparts; luminosity depends on NS EOS
 & BH spin: Observation will reveal them.
- NS-NS merger could be the site for r-process nucleosynthesis.

Origin of elements

Galactic compact NS-NS observed

E.g., http://stellarcollapse.org/nsmasses $M(M_{\rm sun})$ $T_{\rm GW}$ P(day)PSR M_1 M_{2} е B1913+16 0.323 0.617 2.828 1.441 1.387 3.0 0.421 2.678 2. B1534+12 0.274 1.333 1.345 27 B2127+11C 0.335 0.681 1.35 2.2 3. 2.71 1.36 4. J0737-3039 0.102 0.088 2.58 1.34 1.25 0.86 5. J1756-2251 0.18 2.57 1.34 1.23 0.32 17 6 J1906+746 0.166 0.085 2.57 1.29 1.32 3.1 *10⁸ yrs Orbital Eccentricity Mass In globular Merger period cluster time

→ Galactic merger rate ~1/10^{5±1} yrs

 (e.g. Kalogera et al., 2007, Abadie et al. 2010)
 → Merger rate ~1-100/yr/(300Mpc)³

