Follow the Roar: Electromagnetic (EM) follow-up of GW150914

Samaya Nissanke

Radboud University Nijmegen EM Follow-up Group in the LVC Collaboration, BlackGEM Science Team

The first observation of a binary black hole merger: Status and future prospects Conference , AEI-Hannover, May 25th, 2016

1/46

"Was that you I heard just now, or was it two black holes colliding?"

Follow the Roar: Electromagnetic (EM) follow-up of GW150914

Samaya Nissanke

Radboud University Nijmegen EM Follow-up Group in the LVC Collaboration, BlackGEM Science Team

The first observation of a binary black hole merger: Status and future prospects Conference , AEI-Hannover, May 25th, 2016

Main Characters

LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914

arXiv: 1602.08492, accepted to ApJL

GW 150914 !

╋

25 [/63] EM groups = 1551 authors

EM Partners

Photometric (energetics) and spectroscopic (chemical, redshift) facilities over a wide-range of electromagnetic wavelengths

ASKAP, LOFAR, MWA, Fermi/GBM, Fermi/LAT, INTEGRAL, IPN, Swift, MAXI, BOOTES, MASTER, Pi of the Sky, DES/DECam, INAF/GRAWITA, iPTF, J-GEM/ KWFC, La Silla–QUEST, Liverpool Telescope, PESSTO, Pan-STARRS, SkyMapper, TAROT, Zadko, TOROS, VIST

Plan of Talk

Part 1: Introduction to GW-EM astronomy

Part 2: Case study — follow up of GW150914

Part 3: What's next for EM follow-up?

Part I: Introduction to EM-GW astronomy

Binary Black Hole (BBH) merger !

A surprise: 4 days before the first Science Run ... Burst search (cWB): SNR of 23.45 and FAR < 0.371 yr⁻¹ [1 month⁻¹] Max Frequency → Orbital Frequency → Total mass > 70 M _☉

BBH merger ! ...

A surprise: 4 days before the first Science Run ... Burst search (cWB): SNR of 23.45 and FAR < 0.371 yr⁻¹ [1 month⁻¹] Max Frequency → Orbital Frequency → Total mass > 70 M _o

NO EM COUNTERPART IS GENERALLY EXPECTED

(unless in highly dense magnetized plasmas or in extremely gas rich environments)

... cf. traditional high-frequency GW sources with EM counterparts

<u>Delayed outflows</u> during merger or core-collapse that

are responsible for EM signatures

NS or Black Hole

Neutron Star Binary Mergers

Supernova

Credit: CIT

Recent change: we can today detect GW and EM radiation

EM counterparts: motivation

- Strong field gravity astrophysics
 Physical processes in strongly curved space-times
- 2. Stellar Evolution

Understanding the fate of compact binary stellar systems?

Cosmic Enrichment
 Sites of r-process nucleosynthesis

Cosmological Probes
 Measuring the expansion history of the Universe

EM from Two Types of Matter Outflows

[see Shibata and Kiuchi talks]

Outflows' kinetic energy is converted into internal energy. Expands, cools and heated by shocks or radioactivity.

EM emission provides merger energetics and environment

NS

and Piran 2011, Hotokezaka et al., 2015]

1. Four different EM observable timescales

[see Piran and Shibata talks]

2. EM emission geometry

[see Piran and Shibata talks]

3. EM counterparts already observed?

[see Piran and Shibata talks]

16/46

[e.g., <u>fast radio bursts:</u> Thornton + (2013), Spitler + (2013), Burke-Spolar + (2014), Petroff + (2015) ...; <u>kilonova</u>: Tanvir + 2013, Berger + 2013, Yang et al. 2015]

Next step: combine and interpret GW + EM

from the GW chirp

- + Masses (several to tens of %)
- + Spins (several to tens of %)
- + NS radii (tens of %)
- + Geometric properties: (tens of %)
 - Inclination angle
 - Source Position
 - Luminosity distance

from EM signature

- + Mass ejecta and velocity
- Magnetic field strength
- + Energetics and Beaming
- + Redshift, Accurate Position
- + Nuclear Physics -> Opacities
- + Stellar populations
- + Previous binary evolution & mass loss

Next step: combine and interpret GW + EM

from the GW chirp

- + Masses (several to tens %)
- + Spins (several to tens of %)
- + NS radii (tens of %)
- + Geometric properties: (tens of %)
 - Inclination angle
 - Source Position
 - Luminosity distance

from EM signature

- + Mass ejecta and velocity
- Magnetic field strength
- Energetics and Beaming
- + Redshift, Accurate Position
- + Nuclear Physics -> Opacities
- + Stellar populations
- + Previous binary evolution & mass loss

Strong signal binary: Characterization

Population: Demographics, ecology and census

Part II: Follow-up of GW150914

Timeline of EM Follow-up

Timeline of EM Follow-up

Three announcements sent via GW-alert GCN to MOU EM partners:

- + 1 (2 days after) first set of sky maps
- + 2 (3 weeks after) BBH candidate
- + 3 (4 months after) final sky map

1 & 2. Unmodelled burst searches:

continuous Wave Burst (cWB, 17 min, 310 deg.²) and Omicron LAL-Inference Burst (LIB, 14hour, 750 deg.²)

3. <u>Compact Binary Coalescence modelled parameter</u> <u>estimation:</u>

LALInference (several weeks, 590 deg.²)

annulus where polar angle is determined by the arrival time at two detectors

1 & 2. Unmodelled burst searches:

<u>continuous Wave Burst (cWB, 17 min, 310 deg.²</u>) and Omicron LAL-Inference Burst (LIB, 14hour, 750 deg.²)

3. <u>Compact Binary Coalescence modelled parameter</u> <u>estimation:</u>

LALInference (several weeks, 590 deg.²)

[see Klimenko et al. 2016]

annulus where polar angle is determined by the arrival time at two detectors

1 & 2. Unmodelled burst searches:

continuous Wave Burst (cWB, 17 min, 310 deg.²) and <u>Omicron LAL-Inference Burst (LIB, 14hour, 750 deg.²)</u>

3. <u>Compact Binary Coalescence modelled parameter</u> <u>estimation:</u>

LALInference (several weeks, 590 deg.²)

[see Lynch et al. 2015]

annulus where polar angle is determined by the arrival time at two detectors

1 & 2. <u>Unmodelled burst searches</u>:

continuous Wave Burst (cWB, 17 min, 310 deg.²) and Omicron LAL-Inference Burst (LIB, 14hour, 750 deg.²)

3. <u>Compact Binary Coalescence modelled parameter</u> <u>estimation:</u>

LALInference (several weeks, 590 deg.²)

[see Veitch et al. 2015]

annulus where polar angle is determined by the arrival time at two detectors

Sky Maps + Virgo/LIGO India

annulus where polar angle is determined by the arrival time at two detectors

factor of 10 - 30 (Virgo); further improvement of 1.2 -2 (LIGO India)

Multi-wavelength EM Sky Coverage

Sky Coverage versus time

19 orders of magnitude in frequency space

					Area	Со	ntained	probabili	ty (%)
	Instrument	Band ^a	Depth ^b	Time ^c	(deg^2)	cWB	LIB	BSTR.	LALInf.
				Gamma-ra	ay				
	Fermi LAT Fermi GBM INTEGRAL IPN	20 MeV–300 GeV 8 keV–40 MeV 75 keV–1 MeV 15 keV–10 MeV	$\begin{array}{c} 1.7\times10^{-9}\\ 0.75\times10^{-7}~(0.11\text{MeV})\\ 1.3\times10^{-7}\\ 1\times10^{-9}\end{array}$	(every 3 hr) (archival) (archival) (archival)		100 100 100 100	100 100 100 100	100 100 100 100	100 100 100 100
				X-ray					
targeted 5 galaxies	MAXI/GSC Swift XRT	2–20 keV 0.3–10 keV	1×10^{-9} 5×10^{-13} (gal.) $2-4 \times 10^{-12}$ (LMC)	(archival) 2.3, 1, 1 3.4, 1, 1	17900 0.6 4.1	95 0.03 1.2	89 0.18 1.9	92 0.04 0.16	84 0.05 0.26
	Optical								
	DECam	i, z	i < 22.5, z < 21.5	3.9, 5, 22	100	38	14	14	11
+ 1-4m class telescopes	1PTF KWFC	R i	K < 20.4 i < 18.8	3.1, 3, 1 3.4 1 1	140	3.1	2.9	0.0	0.2
$\frac{1}{2}$ of OID footly interval	MASTER	Č	< 19.9	-1.1, 7, 7	590	56	35	55	49
+ 1/3 of UIR facilities	Pan-STARRS1	i	i < 19.2 - 20.8	3.2, 21, 42	430	28	29	2.0	4.2
targeted galaxies	La Silla–QUEST	g,r	r < 21	3.8, 5, 0.1	80	23	16	6.2	5.7
largeleu galakies	SkyMapper	i, v	i < 19.1, v < 17.1	2.4, 2, 3	30	9.1	7.9	1.5	1.9
+ 57% (cWB) and	Swift UVOT	\boldsymbol{u}	u < 19.8 (gal.)	2.3, 1, 1	3	0.7	1.0	0.1	0.1
3770 (CVD) and		u	u < 18.8 (LMC)	3.4, 1, 1					
36% (LAL Inference)	TAROT	С	R < 18	2.8, 5, 14	30	15	3.5	1.6	1.9
	TOROS VST	${f C} r$	r < 21 $r < 22.4$	2.5, 7, 90 2.9, 6, 50	0.6 90	0.03 29	0.0 10	0.0 14	0.0 10
	Near Infrared								
	VISTA	Y, J, K_S	J < 20.7	4.8, 1, 7	70	15	6.4	10	8.0
				Radio					
	ASKAP	863.5 MHz	5–15 mJy	7.5, 2, 6	270	82	28	44	27
+ 86% (LAL Inference)	LOFAR	145 MHz	12.5 mJy	6.8, 3, 90	100	27	1.3	0.0	0.1
	MWA	118 MHz	200 mJy	3.5, 2, 8	2800	97	72	86	86

					Area Contained probability		bility (%)				
	Instrument	Band ^a	Depth ^b	Time ^c	(deg ²)	cWB	LIB	BSTR.	LALInf.	-	
				Gamma-ra	-тау						
	Fermi LAT Fermi GBM	20 MeV-300 GeV 8 keV-40 MeV	1.7×10^{-9} $0.7-5 \times 10^{-7}$ (0.1–1 MeV)	(every 3 hr) (archival)		100 100	100 100	100 100	100 100		
	IN IEGRAL IPN	75 keV–1 MeV 15 keV–10 MeV	1.3×10^{-9} 1×10^{-9}	(archival) (archival)		100	100	100	100		
	MAXI/GSC	2–20 keV	1×10^{-9}	(archival)	17900	95	89	92	84		
targeted 5 galaxies	Swift XRT	0.3–10 keV	5×10^{-13} (gal.) 2–4 × 10 ⁻¹² (LMC)	2.3, 1, 1 3.4, 1, 1	0.6 4.1	0.03 1.2	0.18 1.9	0.04 0.16	0.05 0.26		
		Optical									
	DECam	i, z	i < 22.5, z < 21.5	3.9, 5, 22	100	38	14	14	11		
+ 1-4m class telescopes	iPTF	R	R < 20.4	3.1, 3, 1	140	3.1	2.9	0.0	0.2		
	KWFC	i C	i < 18.8	3.4, 1, 1	24	0.0	1.2	0.0	0.1		
+ 1/3 of OIR facilities	MASIEK Don STADDS1	Ċ	< 19.9	-1.1, /, / 2.2.21.42	390 430	20	33 20	20	49		
	La Silla_OUEST	ı a.r	i < 19.2 - 20.8 r < 21	3.2, 21, 42 3.8 5 0 1	430 80	20	29 16	2.0 6.2	4.2 5.7		
targeted galaxies	SkyMapper	i, v	i < 19.1, v < 17.1	2.4. 2. 3	30	9.1	7.9	1.5	1.9		
E_{70} (c)(P) and	Swift UVOT	u	u < 19.8 (gal.)	2.3, 1, 1	3	0.7	1.0	0.1	0.1		
57% (CVVD) and	U U	u	u < 18.8 (LMC)	3.4, 1, 1							
36% (LAL Inference)	TAROT	С	R < 18	2.8, 5, 14	30	15	3.5	1.6	1.9		
	TOROS	С	r < 21	2.5, 7, 90	0.6	0.03	0.0	0.0	0.0		
	VST	r	r < 22.4	2.9, 6, 50	90	29	10	14	10	-	
				Near Infra	red					_	
	VISTA	Y, J, K_S	J < 20.7	4.8, 1, 7	70	15	6.4	10	8.0	_	
				Radio						_	
1000/(101)	ASKAP	863.5 MHz	5–15 mJy	7.5, 2, 6	270	82	28	44	27		
+ 80% (LAL INTERENCE)	LOFAR	145 MHz	12.5 mJy	6.8, 3, 90	100	27	1.3	0.0	0.1		
	MWA	118 MHz	200 mJy	3.5, 2, 8	2800	97	12	86	86	-	

Gamma Ray

					Area	Co	Contained proba		ability (%)		
	Instrument	Band ^a	Depth ^b	Time ^c	(deg^2)	cWB	LIB	BSTR.	LALInf.		
				Gamma-ra	ау						
	Fermi LAT	20 MeV-300 GeV	$1.7 imes 10^{-9}$	(every 3 hr)	_	100	100	100	100		
	Fermi GBM	8 keV-40 MeV	$0.7-5 \times 10^{-7} (0.1-1 \text{ MeV})$	(archival)	_	100	100	100	100		
	INTEGRAL	75 keV-1 MeV	$1.3 imes 10^{-7}$	(archival)	_	100	100	100	100		
	IPN	15 keV-10 MeV	1×10^{-9}	(archival)	_	100	100	100	100		
				X-ray							
		2 201-37	1 10-9	(a matrices 1)	17000	05	00	02			
targeted 5 galaxies	MAXI/GSC	2-20 keV	1×10^{-13} (ccl.)	(archival)	1/900	95	0.19	92	84		
	Swift XKI	0.3-10 KeV	5×10 (gal.)	2.5, 1, 1	0.0	0.05	0.18	0.04	0.05		
			$2-4 \times 10$ (LMC)	3.4, 1, 1	4.1	1.2	1.9	0.16	0.20		
		Optical									
	DECam	i, z	i < 22.5, z < 21.5	3.9, 5, 22	100	38	14	14	11		
1 1 Am class toloscopos	iPTF	R	R < 20.4	3.1, 3, 1	140	3.1	2.9	0.0	0.2		
+ 1-4m class telescopes	KWFC	i	i < 18.8	3.4, 1, 1	24	0.0	1.2	0.0	0.1		
1/2 of OIP facilities	MASTER	С	< 19.9	-1.1, 7, 7	590	56	35	55	49		
+ 1/5 OF OIN Idenities	Pan-STARRS1	i	i < 19.2 - 20.8	3.2, 21, 42	430	28	29	2.0	4.2		
targeted galaxies	La Silla–QUEST	g,r	r < 21	3.8, 5, 0.1	80	23	16	6.2	5.7		
targeteu galakies	SkyMapper	i, v	i < 19.1, v < 17.1	2.4, 2, 3	30	9.1	7.9	1.5	1.9		
+ 57% (cWB) and	Swift UVOT	u	u < 19.8 (gal.)	2.3, 1, 1	3	0.7	1.0	0.1	0.1		
		u	u < 18.8 (LMC)	3.4, 1, 1							
36% (LAL Inference)	TAROT	С	R < 18	2.8, 5, 14	30	15	3.5	1.6	1.9		
	TOROS	С	r < 21	2.5, 7, 90	0.6	0.03	0.0	0.0	0.0		
	VST	r	r < 22.4	2.9, 6, 50	90	29	10	14	10		
		Near Infrared									
	VISTA	Y, J, K_S	J < 20.7	4.8, 1, 7	70	15	6.4	10	8.0		
				Radio							
	ASKAP	863.5 MHz	5–15 mJv	7.5, 2, 6	270	82	28	44	27		
+ 86% (LAL Inference)	LOFAR	145 MHz	12.5 mJv	6.8, 3, 90	100	27	1.3	0.0	0.1		
	MWA	118 MHz	200 mJy	3.5, 2, 8	2800	97	72	86	86		
				, _, _							

X-Ray

					Area	Co	ntained	l probabili	ity (%)	
	Instrument	Band ^a	Depth ^b	Time ^c	(deg ²)	cWB	LIB	BSTR.	LALInf.	
				Gamma-ra	ау					
	Fermi LAT	20 MeV-300 GeV	1.7×10^{-9}	(every 3 hr)	_	100	100	100	100	
	Fermi GBM	8 keV-40 MeV	$0.7-5 \times 10^{-7}$ (0.1–1 MeV)	(archival)	_	100	100	100	100	
	INTEGRAL	75 keV-1 MeV	$1.3 imes 10^{-7}$	(archival)	_	100	100	100	100	
	IPN	15 keV-10 MeV	$1 imes 10^{-9}$	(archival)	_	100	100	100	100	
				X-ray						
	MANHORO	0.001-34	110-9	(anal-11)	17000	05	00	00		
targeted E galaxies	MAXI/GSC	2-20 keV	1×10^{-13} (col.)	(archival)	1/900	95	89	92	84	
targeted 5 galaxies	Swiji AKI	0.5-10 KeV	5×10 (gal.) 2 4×10^{-12} (LMC)	2.3, 1, 1 3.4, 1, 1	0.0	0.03	0.18	0.04	0.05	
			2-4 × 10 (LMC)	3.4, 1, 1	4.1	1.2	1.9	0.10	0.20	
				Optical						
	DECam	i, z	i < 22.5, z < 21.5	3.9, 5, 22	100	38	14	14	11	
+ 1 Am class toloscopos	iPTF	R	R < 20.4	3.1, 3, 1	140	3.1	2.9	0.0	0.2	
+ 1-4111 class telescopes	KWFC	i	i < 18.8	3.4, 1, 1	24	0.0	1.2	0.0	0.1	
+ 1/3 of OIR facilities	MASTER	С	< 19.9	-1.1, 7, 7	590	56	35	55	49	
	Pan-STARRS1	i	i < 19.2 - 20.8	3.2, 21, 42	430	28	29	2.0	4.2	
targeted galaxies	La Silla–QUEST	g,r	r < 21	3.8, 5, 0.1	80	23	16	6.2	5.7	
targetea galaxies	SkyMapper	i, v	i < 19.1, v < 17.1	2.4, 2, 3	30	9.1	7.9	1.5	1.9	
+ 57% (cWB) and	Swift UVOT	u	u < 19.8 (gal.)	2.3, 1, 1	3	0.7	1.0	0.1	0.1	
	T L D O T	u	u < 18.8 (LMC)	3.4, 1, 1			~ ~			
36% (LAL Inference)	TAROT	C	R < 18	2.8, 5, 14	30	15	3.5	1.6	1.9	
	TOROS	C	r < 21	2.5, 7, 90	0.6	0.03	0.0	0.0	0.0	
	VS1	r	r < 22.4	2.9, 6, 50	90	29	10	14	10	
		Near Infrared								
	VISTA	Y, J, K_S	J < 20.7	4.8, 1, 7	70	15	6.4	10	8.0	
				Radio						
	ASKAP	863.5 MHz	5–15 mJv	7.5, 2, 6	270	82	28	44	27	
+ 86% (LAL Inference)	LOFAR	145 MHz	12.5 mJy	6.8, 3, 90	100	27	1.3	0.0	0.1	
	MWA	118 MHz	200 mJy	3.5, 2, 8	2800	97	72	86	86	
			· ·	, , -						

Optical-IR

			_		Area	Containe		l probabili	ity (%)	
	Instrument	Band ^a	Depth ^b	Time ^c	(deg^2)	cWB	LIB	BSTR.	LALInf.	
				Gamma-r	ay					
	Fermi LAT	20 MeV-300 GeV	$1.7 imes 10^{-9}$	(every 3 hr)		100	100	100	100	
	Fermi GBM	8 keV-40 MeV	$0.7-5 \times 10^{-7} (0.1-1 \text{ MeV})$	(archival)	_	100	100	100	100	
	INTEGRAL	75 keV-1 MeV	1.3×10^{-7}	(archival)	_	100	100	100	100	
	IPN	15 keV-10 MeV	1×10^{-9}	(archival)	_	100	100	100	100	
				X-ray						
	MAXI/GSC	2–20 keV	$1 imes 10^{-9}$	(archival)	17900	95	89	92	84	
targeted 5 galaxies	Swift XRT	0.3–10 keV	5×10^{-13} (gal.)	2.3, 1, 1	0.6	0.03	0.18	0.04	0.05	
			$2-4 \times 10^{-12}$ (LMC)	3.4, 1, 1	4.1	1.2	1.9	0.16	0.20	
	Optical									
	DECam	i, z	i < 22.5, z < 21.5	3.9, 5, 22	100	38	14	14	1	
1_1m class toloscopos	iPTF	R	R < 20.4	3.1, 3, 1	140	3.1	2.9	0.0	0.2	
1-411 class telescopes	KWFC	i	i < 18.8	3.4, 1, 1	24	0.0	1.2	0.0	0.	
1/3 of OIR facilities	MASTER	С	< 19.9	-1.1, 7, 7	590	56	35	55	4	
1/5 of on facilities	Pan-STARRS1	i	i < 19.2 - 20.8	3.2, 21, 42	430	28	29	2.0	4.2	
targeted galaxies	La Silla–QUEST	g,r	r < 21	3.8, 5, 0.1	80	23	16	6.2	5.	
	SkyMapper	i, v	i < 19.1, v < 17.1	2.4, 2, 3	30	9.1	7.9	1.5	1.9	
57% (cWB) and	Swift UVOT	u	u < 19.8 (gal.)	2.3, 1, 1	3	0.7	1.0	0.1	0.	
	TADOT	u	u < 18.8 (LMC)	3.4, 1, 1	20	15	2.5	16	1	
36% (LAL Inference)	TOPOS	C	K < 18	2.8, 5, 14	30	15	3.5	1.0	1.	
· · ·	VST	r	r < 21 $r < 22.4$	2.3, 7, 90 2.9, 6, 50	90	29	0.0 10	0.0 14	10.0	
	Near Infrared									
	VISTA	Y, J, K_S	J < 20.7	4.8, 1, 7	70	15	6.4	10	8.	
				Radio						
	ASKAP	863.5 MHz	5–15 mJy	7.5, 2, 6	270	82	28	44	2	
+ 86% (LAL Inference)	LOFAR	145 MHz	12.5 mJy	6.8, 3, 90	100	27	1.3	0.0	0.	
	MWA	118 MHz	200 mJy	3.5. 2. 8	2800	97	72	86	8	

Radio

 590 deg^2 (90% credible region)

 590 deg^2 (90% credible region)

$590 \mathrm{deg}^2$	(90%	credible	region)
-----------------------	------	----------	---------

	Spectroscopic follow-up							
n. of cand.	Disc. Survey	Epochs	λ (Å)	$\Delta \lambda^{a}$ (Å)				
8	iPTF	1	4650 - 9600	3.5				
1	Pan-STARRS1	1	4500 - 7500	18				
10	QUEST/Pan-STARRS1	1	3650 - 9250	18				
1	Pan-STARRS1	1	3200 - 9000	4 - 8				
9	Pan-STARRS1	1	3200 - 10000	4 - 6				
	Ra	dio follow	-up					
n. of cand.	Disc. Survey	Epochs	Freq. (GHz)	Lim. Flux ^b (uJy)				
1	iPTF	3	6	$\lesssim 50$				
	n. of cand. 8 1 10 1 9 n. of cand. 1	Spectren. of cand.Disc. Survey8iPTF10Pan-STARRS110QUEST/Pan-STARRS110Pan-STARRS19Pan-STARRS19Disc. Surveyn. of cand.Disc. Survey1iPTF	Spectroscopic forn. of cand.Disc. SurveyEpochs8iPTF11Pan-STARRS1110QUEST/Pan-STARRS111Pan-STARRS119Pan-STARRS119Pan-STARRS1110Disc. SurveyEpochs1iPTF3	Spectroscopic follow-up n. of cand. Disc. Survey Epochs λ (Å) 8 iPTF 1 4650 – 9600 1 Pan-STARRS1 1 4500 – 7500 10 QUEST/Pan-STARRS1 1 3650 – 9250 1 Pan-STARRS1 1 3200 – 9000 9 Pan-STARRS1 1 3200 – 10000 9 Pan-STARRS1 1 3200 – 10000 9 Disc. Survey Epochs Freq. (GHz) 1 iPTF 3 6				

e.g.,

- Supernova type Ia and II
- Active Galactic Nucleii
- a few dwarf nova

comparison with GW redshift and distance is critical

[e.g., SWIFT; arXiv:1602.03868 DES; arXiv:1602.04199 and 1602.04200 Pan-STARRS;arXiv:1602.04156 iPTF; arXiv:1602.08764]

BBH counterpart - Fermi GBM ?

[see von Kienlin talk]

No reported real-time observed EM counterpart to GW 150914 (see companion papers from EM partners) ...

..bar de facto, the FERMI GBM detected a sub-threshold event above 50 keV, 0.4 s after the GW event was detected, with a FAP of 0.0022 and lasting 1s. <u>Ill-constrained</u> location (if it was a counterpart, would reduce 600 -> 200 deg.²). Hard X-ray emission between 1 keV and 10 MeV of 1.8 × 10⁴⁹ ergs/s. No candidates reported by Integral.

e.g. arXiv in the week following the announcement: Short Gamma-Ray Bursts from the Merger of Two Black Hole Perna et al. 2016 Electromagnetic Counterparts to Black Hole Mergers Detected by LIGO Loeb 2016 Electromagnetic Afterglows Associated with Gamma-Ray Emission Coincident with Binary Black Hole Merger Event GW150914 Yamazaki et al. 2016 Mergers of Charged Black Holes: Gravitational Wave Events, Short Gamma-Ray Bursts, and Fast Radio Bursts Zhang 2016 Implication of the association between GBM transient 150914 and LIGO Gravitational Wave event GW150914 Li et al. 2016

Part III: The immediate future of EM follow-up

The future: Upcoming wide-field optical telescopes

40

LSST, 8.4 m, 9.6 deg.², 24.5 mag, 2021+ 5 colours

Zwicky Transient Facility (ZTF), 1.2m, 45 deg.², 21 mag, 2017 2 colours

BlackGEM, 21 mag, 11/40 deg.², 2017 5 colours <u>www.blackgem.eu</u>

PanSTARRS IL& GC

Optical detection in LIGO INDIA era

5 GW detectors with LIGO India: 2020s

[Nissanke, Kasliwal, Georgieva 2013]

```
41/46
```

The future: Current & Upcoming Radio facilities

[see Piran talk]

Strategy I) reduce false-positive rate with GW volumes

[LIGO, Virgo, advanced design sensitivity noise curves]

[Singer et al., arXiv:1603.07333, 2016]

Strategy II) Reduce false-positive rate with GW volumes & galaxy catalog

Reduce false positive by factor of 10-100s

Strategy III) Probabilistic <u>Identification</u> through different colors

[Jacobs, Nissanke et al. in prep]

[Jacobs, Nissanke et al. in prep;

use in Astrophysical Transient Toolkit for LIGO-Virgo EM Follow up with Berry, Hu, RU members]

Conclusions: lessons to take forward

Extremely positive and heroic multi-wavelength effort using wide-field synoptic and spectroscopic capabilities to follow-up GW150414.

 EM follow-up should be prepared for BBH (at a weekly rate perhaps!) and NSBH mergers beyond NS-NS mergers.
 i.e. prepare galaxy catalogs out to much larger z (photo-zs).

- GW sky position, source type (and distance), [any information on binary's inclination angle, masses and spin] released as soon as possible.

- Systematic and comprehensive understanding of the astrophysical transient and variable skies across wavebands.

Identification: Galactic Transient Sky Simulator

[Jacobs, Nissanke et al. in prep; use in Astrophysical Transient Toolkit for LIGO-Virgo EM Follow up with Berry, Hu, RU members]

Identification: Galactic Transient Sky Simulator

New EM facilities coming online: the BlackGEM telescope array in 2017

Phase-I: 3 telescopes, each with 65 cm diameter mirrors Funded by Netherlands and KU Leuven

Phase-II: 15 telescopes

Southern sky: La Silla

- Complementarity to N. Hemisphere
- GW source positions often split
- Spectroscopic follow-up Gemini/GMT/VLT/E-ELT, ALMA, SKA, etc.
- Good seeing allows for smaller mirror
- Y1+2: All Sky and Fast Synoptic Surveys

25/46

Prototype: MeerLICHT slewed to MeerKAT (contemporaneous optical-radio)

Optical detection in LIGO INDIA era

5 GW detectors with LIGO India: 2020s

[Nissanke, Kasliwal, Georgieva 2013]

```
26/46
```

1. EM radiation: luminosity & flux

1. Luminosity - intrinsic: amount of energy radiated by an object per unit time.

 $L = \frac{dE}{dt}$

Units: erg/s or W

[L_{sun}: 4×10^{26} W or 4×10^{33} erg/s]

2. Flux - Observable:

Intensity follows 1/r² law

 $f = \frac{L}{4\pi d^2}$

Units: erg/s/cm² or W/m²

2. EM radiation: observable flux

3. EM radiation: magnitudes

apparent magnitude (Hipparchus, 2100 years ago!)

 $m_1 - m_2 = -2.5 \log_{10}(f_1 / f_2)$

- logarithmic scale.
- Increase in mag. 2.5 is equiv. to x 10 dimmer in brightness.

absolute magnitude:

 $M = m - 5\log_{10}d + 5$

apparent magnitude at 10 pc $(1pc = 3.1 \times 10^{18}m = 3.3 \text{ ly})$

Limit of Hubble & Keck (30) Hale telescope limit (27) 20 1-metre telescope limit (1 Binocular limit (10) Apparent Magnitude 10 Barnard's Star (9.5) ked eye limit (6.0) aris (2.5) geuse (0.8) lpha Centauri (0.0) Sirius (-1.5) Venus (at brightest -4 -10 Full Moon (-12.5) -20 Sun (-26.8)