

THOMAS TAURIS

Max-Planck-Institut für Radioastronomie

Rheinische Friedrich-Wilhelms-Universität Bonn

- I. Standard formation scenario for producing BH-BH binaries
 - Common envelopes: pitfalls and some optimism
- II. New model: massive overcontact binary (MOB) scenario with CHE
- III. Momentum kicks and BH-BH binaries

Two new papers led by Bonn PhD-students:

Kruckow, Tauris, Langer, Szecsi, Marchant & Podsiadlowski (2016), in prep. On the ejectability of common envelopes of massive stars – Implications for the progenitor of GW150914

Marchant, Langer, Podsiadlowski, Tauris & Moriya (2016), A&A 558, 50 A new route towards merging massive black holes

GW150914: BH-BH merger detected by LIGO

First lesson: **Rumour waves** travel though **social media** at near the **speed of light**

Well... it's a BH binary and the masses are crazily big!!

Three scenarios for producing a massive BH-BH merger:

• Dynamical channel in a dense stellar environment (Sigurdsson & Hernquist 1993; Portegies-Zwart & McMillan 2000; Rodriguez et al. 2016)

Less than 10%

• Chemically homogeneous evolution (CHE) and massive overcontact binaries (MOB) (de Mink et al. 2009; Mandel & de Mink 2016; de Mink & Mandel 2016; Marchant et al. 2016)

Abadie et al. (2010)

TABLE II: Compact binary coalescence rates per Milky Way Equivalent Galaxy per Myr.

Source	$R_{ m low}$	$R_{ m re}$, I	l_{high}	R_{\max}			
NS-NS (MWEG ^{-1} Myr ^{-1})	$1 \ [1]^a$	100 [$(1)^{b}$ 100	$00 \ [1]^c$	$4000 \ [16]^{a}$	ł		
NS-BH (MWEG ^{-1} Myr ^{-1})	$0.05 \ [18]^e$	3 [18	$[100]{8}^{f}$	$[18]^{g}$	Factor ~1(000		
\rightarrow BH-BH (MWEG ⁻¹ Myr ⁻¹)	$\bigcirc 0.01 \ [14]^h$	0.4 []	$[4]^i$ 30	$[14]^{j}$	Factor			
IMRI into IMBH $(GC^{-1} Gyr^{-1})$			3	$[19]^{k}$	$20 [19]^l$			
IMBH-IMBH $(GC^{-1} Gyr^{-1})$			0.00	$7 \ [\underline{20}]^m$	$0.07 \ [\underline{20}]^n$			
TABLE VIII: Estimates of BH-BH inspiral rates.								
Rate model			$R_{\rm low}$	$R_{\rm re}$	$R_{ m high}$	$R_{\rm max}$		
O'Shaughnessy et al. pop. synth. $[14]^a$ (MWEG ⁻¹ Myr ⁻¹)			< 0.01	0.4	30			
Voss & Tauris pop. synth. $[34]^b$ (MWEG ⁻¹ Myr ⁻¹)			$\sub{1.3}$	9.7	76	>		
Belczynski et al. pop. synth.: model A of $[35]^c$ (MWEG ⁻¹ Myr ⁻¹)				0.02				
Belczynski et al. pop. synth.: model B of $[35]^c$ (MWEG ⁻¹ Myr ⁻¹)				0.01				
Belczynski et al. pop. synth.: model C of $[35]^c$ (MWEG ⁻¹ Myr ⁻¹)				7.7				
Nelemans pop. synth. $[36]^d$ (MWEG ⁻¹ Myr ⁻¹)			0.1	5	250			
"Double-core" scenario: Dewi et al. $[37]^e$ (MWEG ⁻¹ Myr ⁻¹)			0.19	19.87				
Globular cluster dynamics $[55]^f (Mpc^{-3} Myr^{-1})$			10^{-4}	0.05		1		
Globular cluster dynamics and pop. synth. $[42]^g$ (GC ⁻¹ Gyr ⁻¹)				2.5				
Nuclear cluster w/ MBH $[\underline{56}]^h$ (NC ⁻¹ Myr ⁻¹)			2×10^{-4}	$1.3 imes 10^{-1}$	$^{-3}$ 0.015			
Nuclear cluster w/out MBH $[57]^i$ (NC ⁻¹ Myr ⁻¹)				0.3				

Mon. Not. R. Astron. Soc. 342, 1169-1184 (2003)

Galactic distribution of merging neutron stars and black holes – prospects for short gamma-ray burst progenitors and LIGO/VIRGO

R. Voss^{*} and T. M. Tauris^{*}

*Astronomical Observatory, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark

The BH-BH formation rate is extremely sensitive to a few key parameters

On the ejectability of common envelopes of massive stars

Implications for the progenitor of GW150914

M. U. Kruckow^{1,*}, T. M. Tauris^{2,1}, N. Langer¹, D. Szécsi¹, P. Marchant¹ and Ph. Podsiadlowski^{3,1}

Can an in-spiralling BH eject the envelope of a massive star?

Minimum mass of in-spiralling star to successfully eject the envelope? $\Delta E_{orb} \approx -\frac{GM_{core}M_X}{2a_{final}}$

Kruckow et al. (2016), in prep.

FITTI FITTI

In prep. Deleted in public version

Where does the envelope ejection terminate?

• Remaining amount of hydrogen

Difference in mass coordinate of about 4 M_{sun} corresponds to a radius difference by a factor 500! Extremely important for the final orbital separation.

Chemically Homogeneous Evolution of a 30 M_{sun} star with Z=0.002

These rapidly rotating stars remain blue and compact, and often avoid RLO/CE

RESULTS

Marchant et al. (2016)

Strong dependence on **metallicity** (stellar winds)

Pair-instability SN gap

Heger & Woosley (2002) Chatzopoulos & Wheeler (2012)

> M_{BH} = 25-60 M_{sun} M_{BH} > 130 M_{sun}

Can be **detected** by **LIGO** <u>if</u> the **seismic-wall cut** can be moved to **lower** frequencies.

Masses of collapsing cores! BH masses might be smaller by 0-30%

FURTHER RESULTS PREDICTIONS

- BH-BH mergers with $q\sim 1$
- PISN gap should be detected by LIGO
- Spins of BHs: a > 0.4 $(\vec{s_1} \neq \vec{s_2} \neq \vec{L}?)$
- Metallicities < $Z_{sun}/8$

Marchant et al. (2016)

aLIGO detection rates

Marchant et al. (2016)

Metallicity →	Z _o /50	$Z_{\odot}/20$	$Z_{\odot}/10$	Z _☉ /4	Integrated Z
N _{BHBH} /N _{SN} below PISN gap	6.7×10^{-4}	1.3×10^{-3}	3.4×10^{-4}	0	$(0.69 - 13) \times 10^{-5}$
$N_{\rm BHBH}/N_{\rm SN}$ above PISN gap	2.7×10^{-4}	0	0	0	$(0.011 - 1.8) \times 10^{-5}$
aLIGO rate (yr-1) below PISN gap	3539	5151	501	0	19–550
aLIGO rate (yr ⁻¹) above PISN gap	5431	0	0	0	2.1–370

Uncertainties due to mapping of galactic metallicity distribution throughout the Universe * Caveat: low f_{ISCO} above PISN gap + redshift

*Work in progress: chemical evolution and cosmology, improved LIGO sensitivities

Conclusions

• Massive stars up to, at least, 115 M_{sun} (for a wide range of metallicities) are **likely** to shed their envelopes and **survive CE evolution** (Kruckow et al. 2016, in prep.)

 \rightarrow The standard formation channel can possibly produce **GW150914** progenitors

- MOB (massive overcontact binary) with CHE (chemical homogeneous evolution) is a new formation channel for massive BH-BH binaries (Marchant et al. 2016)
 → Avoid the controversial common envelope phase
- **Predictions** for LIGO from the **MOB scenario**:
 - \rightarrow BH mass ratios close to 1 (not required in the standard scenario)
 - \rightarrow **Spins** of merging BHs: a > 0.4 $(\vec{s_1} \neq \vec{s_2} \neq \vec{L}?)$
 - \rightarrow Pair-instability SN gap should be detected in ref. frame of binaries
- Future LIGO BH-BH merger detections will be able to distinguish formation models

