Electromagnetic Counterparts of GW sources Past, Present and Future

Tsvi Piran

Racah Institute for Physics The Hebrew University, Jerusalem

Kenta Hotokezaka, Ehud Nakar, Stephan Rosswog

Joseph Katz 1930-2016

Outline

- Why?
- What and How?
 - Short GRBs
 - Macronova (kilonova)
 - Radio Flares
- BHBH mergers and GW150914-GBM ?
- Conclusions

- Where (host, redshift, distance)
- Much more physics
- Increase sensitivity (and confidence)

GW 150914 Ligo + 16, Localization

- Where (host, redshift, distance)
- Much more physics
- Increase sensitivity (and confidence)

GW 150914 Ligo + Virgo + Indigo, Localization

- Where (host, redshift, distance)
- Much more physics
- Increase sensitivity (and confidence)

- Where (host, redshift, distance)
- Much more physics
- Increase sensitivity (and confidence)

- Where (host, redshift, distance)
- Much more physics
- Increase sensitivity (and confidence)

- Where (host, redshift, distance)
- Much more physics
- Increase sensitivity (and confidence)

What and how?

* For ns² and ns-BH Nothing is really expected for BHBH

Gamma – Ray Bursts (GRBs)

Gamma – Ray Bursts (GRBs)

Once or twice a day we see a burst of low energy gamma-rays lasting for a few seconds.

Gamma – Ray Bursts (GRBs)

Once or twice a day we see a burst of low energy gamma-rays lasting for a few seconds.

The energy released during a burst (~10⁵¹ erg within a few seconds) is only a few orders of magnitude below the energy released by the rest of the Universe at the same time! The energy available is 10⁵³⁻⁵⁴erg. Can a small fraction of this energy produce an EM signal?

The energy available is 10⁵³⁻⁵⁴erg. Can a small fraction of this energy produce an EM signal?

LETTERS TO NATURE

Nucleosynthesis, neutrino bursts and γ -rays from coalescing neutron stars

David Eichler*, Mario Livio†, Tsvi Piran‡ & David N. Schramm§

NEUTRON-STAR collisions occur inevitably when binary neutron stars spiral into each other as a result of damping of gravitational radiation. Such collisions will produce a characteristic burst of gravitational radiation, which may be the most promising source of a detectable signal for proposed gravity-wave detectors¹. Such signals are sufficiently unique and robust for them to have been proposed as a means of determining the Hubble constant². However, the rate of these neutron-star collisions is highly uncertain³. Here we note that such events should also synthesize neutronrich heavy elements, thought to be formed by rapid neutron capture (the r-process)⁴. Furthermore, these collisions should produce neutrino bursts⁵ and resultant bursts of γ -rays; the latter should comprise a subclass of observable γ -ray bursts. We argue that observed r-process abundances and y-ray-burst rates predict rates for these collisions that are both significant and consistent with other estimates.

GRBs - Observations

Prompt gamma rays (0.1–100 sec)
Energy 10⁴⁹–10⁵² ergs
Spectrum ~300 keV but up to a few GeV
Afterglow: X-ray (~ days), optical (~ weeks) and radio (~ year)

GRBs - Theory

@ Relativistic jets (Γ >100)

Afterglow – slowing down of the jet by interaction with surrounding.

Eichler, Livio, TP, Schramm, 88 MacFadyen & Woosley, 98

Collapsars

Indirect Evidence rate hosts macronova

ns mergers

Direct Evidence (low metallicity)

History of Long GRB-SN association

Indirect evidence long
 GRBs in star forming regions.

I998: Tentative association of the peculiar GRB 980425 with the very luminous SN 1998bw

I999-2003 Red bumps in long
 GRB light curves

29 March 2003 Clear association
 of SN 2003dh with GRB 030329

GRBs are beamed - chance of coincidence <1:10 (?)

GRBs are beamed – chance of coincidence <1:10 (?)

Orphan Afterglow

Mergers ejects $0.01-0.04M_{sun}$ with $E_k \sim 10^{50}-10^{51}$ ergs

Stephan Rosswog

Mergers ejects $0.01-0.04M_{sun}$ with $E_k \sim 10^{50}-10^{51}$ ergs

Stephan Rosswog

Different components of mass outflows from mergers (Hotokezata & TP 15)

Macronova* (Li & Paczynski 1997) *Also called Kilonova • Expanding cloud of ejected matter. Radioactive decay of the neutron rich matter. $E_{radioactive} \approx 0.001 Mc^2 \approx$ 10^{50} (M/0.1 M_{sun}) erg

Macronova* (Li & Paczynski 1997) *Also called Kilonova Hektanova • Expanding cloud of ejected matter. Radioactive decay of the neutron rich matter. $E_{radioactive} \approx 0.001 Mc^2 \approx$ 10^{50} (M/0.1 M_{sun}) erg

Macronova* (Li & Paczynski 1997) *Also called Kilonova Hektanova Decanova • Expanding cloud of ejected matter. Radioactive decay of the neutron rich matter. $E_{radioactive} \approx 0.001 Mc^2 \approx$ 10^{50} (M/0.1 M_{sun}) erg

Macronova* (Li & Paczynski 1997)

 Expanding cloud of ejected matter.

Radioactive decay of the neutron rich matter.
 Eradioactive ≈ 0.001 Mc² ≈ 10⁵⁰ (M/0.1 M_{sun}) erg

Macronova* (Li & Paczynski 1997)

 Expanding cloud of ejected matter.

Radioactive decay of the neutron rich matter.
 Eradioactive ≈ 0.001 Mc² ≈ 10⁵⁰ (M/0.1 M_{sun}) erg

=> A weak short Supernova

Supernova

Photosphere

Photons escape

Powered by radioactive decay of ⁵⁶Ni->⁵⁶Co->⁵⁶Fe

Supernova

Photosphere

Photons escape

Powered by radioactive decay of ⁵⁶Ni->⁵⁶Co->⁵⁶Fe

Supernova

Photosphere

Photons escape

luminosity

Powered by radioactive decay of ⁵⁶Ni->⁵⁶Co->⁵⁶Fe

time

Radioactive Decay (Freiburghaus+ 99; Metzger + 11; Goriely + 11; Korobkin + 13; Wanajo + 14)

After a second dE/dt∝t^{-1.3} (Hotokezaka 16)
Photons escape from this region

The light curve depends on

- 1. mass
- 2. velocity
- 3. opacity

luminosity

Increase as we see large and larger fraction of the matter. Decrease due to radioactive decay

time

Macronova

Photons escape from this region

The light curve depends on

- 1. mass
- 2. velocity
- 3. opacity

luminosity

Increase as we see large and larger fraction of the matter. Decrease due to radioactive decay time

Macronova

Light Curve

mass with velocity >v

Diffusion time = expansion time => Mass of the "emitting region"

=> Luminosity

$$L(t) = \dot{\epsilon}(t)m(v) = \dot{\epsilon}_0(t/t_0)^{-\alpha}m(v)$$

Radioactive heating rate

m_{ej}(v) for different configurations TP, Nakar & Rosswog, 13

• $\kappa = 10 \text{ cm}^2/\text{gm}$ • $t_{\text{max}} \propto \kappa^{1/2}$ => longer • $L_{\text{max}} \propto \kappa^{-0.65}$ => weaker • $T \propto \kappa^{-0.4}$ => redder

• $\kappa = 10 \text{ cm}^2/\text{gm}$ • $t_{\text{max}} \propto \kappa^{1/2}$ => longer • $L_{\text{max}} \propto \kappa^{-0.65}$ => weaker • $T \propto \kappa^{-0.4}$ => redder

• $\kappa = 10 \text{ cm}^2/\text{gm}$ • $t_{\text{max}} \propto \kappa^{1/2} => \text{longer}$ • $L_{\text{max}} \propto \kappa^{-0.65} => \text{ weaker}$ • $T \propto \kappa^{-0.4} => \text{ redder}$

\$\kappa = 10cm²/gm
\$\mathbf{t}_{max} \propto \kappa^{1/2} => longer
\$\begin{array}{c} L_{max} \propto \kappa^{-0.65} => weaker
\$\mathbf{T} \propto \kappa^{-0.4} => redder

\$\kappa \equiv 10cm²/gm
\$\mathbf{t}_{max} \propto \kappa^{1/2} => longer
\$\begin{array}{c} L_{max} \propto \kappa^{-0.65} => weaker
\$\mathbf{T} \propto \kappa^{-0.4} => redder

uv or optical -> IR

Peak time and peak luminosityOpacityejected massThe peak time $\tilde{t}_p \approx \sqrt{\frac{\kappa m_{ej}}{4\pi c \bar{v}}} = 4.9 \text{ days} \left(\frac{\kappa_{10} m_{ej,-2}}{\bar{v}_{-1}}\right)^{1/2}$ velocity

The peak luminosity

$$\tilde{L}_{p} \approx \dot{\epsilon}_{0} m_{\rm ej} \left(\frac{\kappa m_{\rm ej}}{4\pi c \bar{v} t_{0}^{2}}\right)^{-\alpha/2} = 2.5 \times 10^{40} \,\frac{\rm erg}{\rm s} \,\left(\frac{\bar{v}_{-1}}{\kappa_{10}}\right)^{\alpha/2} m_{\rm ej,-2}^{1-\alpha/2}$$

v driven winds

Different Y_e, different nucleosynthsis, <u>different opacity: $\kappa = 1 \text{ cm}^2/\text{gm}$ </u>

v driven winds – lightcurves (Metzger & Fernandez 14; Just + 14; Perego + 14)

Grossman, Korobkin, Rosswog, TP 14

Combined macronova signal

(Grossman, Korobkin, Rosswog, TP 14)

Detectability @ 300 Mpc Oynamical ejecta (IR signal) ≈ 23.5-24.5 mag on a time scale of a few days => Rapid follow up is impossible in the IR. dynamical eject wind, m = 10⁻³ M 10 uminosity [10⁴⁰ erg's] -13.5 Neutrino driven wind (UV/Blue signal) -13 2450 K -12 0.1 10 time [d] => Follow up is possible with HyperSupremeCamera on subaru or continous cover with ZTF or equivalent. "Easily" detectable with LSST in 2021 (no IR) - BUT False alarm: 60/(sq deg) at 24 (Nissanke + 13) WFIRST

Macronova Observations

GRB 130603B

z=0.356 <=> 1 Gpc = 3 Glyr

GRB 130603B

GRB130603B @ 9 days AB (6.6 days at the source frame)

HST image (Tanvir + 13)

Macronova?

Kasen & Barnes 13

Tanvir + 13, Berger + 13

GRB 060614

Need M~0.1M. => BH-NS ?

Yang et al., Nature Comm 15

GRB 050709

Solution States Fox et al., 2005; Watson et a., 2006 - not a power law.
Re-analysis of the VLT and a new unreported HST point.
Need M≈0.05M.

Jin et al., 16 submitted

GRB 050709

Spectrum at 2 days => v Wind?

Astroarcheology Radioactive data provides indirect evidence

²⁴⁴Pu (half life 81 Myr)

Rare and "massive" events

Hotokezaka et al., Nature Phys 2015

Implication

Jin et al, 16 explored all nearby short GRB light curves for which there is suitable data

In <u>3 out of 3 (5) a Macronova</u> Candidate signal was detected.

Some of the signals are in optical rather than IR => much easier to detect!

Early spectrum in 050709 suggest a possible wind signature.

=> Promising detection prospects.

The Radio Flare (Nakar & TP 2011)

A long lasting radio flare due to the interaction of the ejecta with surrounding matter should follow the macronova.

The Radio Flare (Nakar & TP 2011)

A long lasting radio flare due to the interaction of the ejecta with surrounding matter should follow the macronova.

The Radio Flare (Nakar & TP 2011)

A long lasting radio flare due to the interaction of the ejecta with surrounding matter should follow the macronova.

Supernova Months Supernova remnant a few x 10⁴ years

Macronova Weeks Radio Flare months – years

Search for the flare from GRB 130603B by the EVLA

Search for the flare from GRB 130603B by the EVLA

Search for the flare from GRB 130603B by the EVLA

Estimates of radio signals from mergers (Hotokezaka + 16)

Model	E_K [erg]	$\left< eta_0 \right> [{ m c}]$	$L_{\rm 1.4GHz}^{n=1} \ [{\rm erg} \ {\rm s}^{-1} {\rm Hz}^{-1}]$	$L_{\rm 1.4GHz}^{n=0.1}$	$L_{\rm 1.4GHz}^{n=0.01}$
DNS_h	10^{51}	0.3	$4\cdot 10^{29}$	$8\cdot 10^{28}$	10^{28}
DNS_m	$3\cdot 10^{50}$	0.25	$8\cdot 10^{28}$	10^{28}	$2\cdot 10^{27}$
DNS_l	10^{50}	0.2	10^{28}	$2\cdot 10^{27}$	$3\cdot 10^{26}$
$BH-NS_h$	$5\cdot 10^{51}$	0.3	$2\cdot 10^{30}$	$5\cdot 10^{29}$	$7\cdot 10^{28}$
$BH-NS_m$	$2\cdot 10^{51}$	0.25	$5\cdot 10^{29}$	$8\cdot 10^{28}$	10^{28}
$BH-NS_l$	$5\cdot 10^{50}$	0.2	$7\cdot 10^{28}$	$9\cdot 10^{27}$	10^{27}
strong-jet	10^{49}	~ 1	$3\cdot 10^{28}$	10^{28}	$2\cdot 10^{27}$
canonical-jet	10^{48}	~ 1	$4\cdot 10^{27}$	10^{27}	$2\cdot 10^{26}$

Radio Light Curves (Hotokezaka et al., 16)

DNS, 1.4GHz, D=200Mpc, n=0.1cm⁻³

F_v [mJy]

Flux [mJy]

Flux [mJy]

Radio Flare Detectability @ 300 Mpc

Detectable for high E_k and density and a quite host (can be resolved on the VLA)

False positives: 0.1/sq deg.

Solution Long observing time - no rush

The BHBH (GW150914) EM counterpart problem

 $>10^{49} \text{ ergs} => > 10^{-5} \text{ m}_{sun}$

Life time of a BHBH binary
~1 Gyr (from minimal separation)

Cannot keep so much mass from formation for 1 Gyr.

A short distance capture + matter injection => A 3 body interaction in a globular cluster?

=> Maybe possible but extremely rare

Short GRBs are (most likely) the best EM counterparts - but they are beamed :(

- 3 out of 3 (5) short GRB candidates show a macronova signal :)
- Macronova (kilonova) are extremely dim and in IR. Furthermore the sky is dominated by optical/IR transients at this level.
- Optical/uv neutrino wind signal is easier to detect but it is short lived.
- Room for other signatures
- Radio signal is robust (but depends on external density). Detection may take month no rush.

Short GRBs are (most likely) the best EM counterparts - but they are beamed :(

- 3 out of 3 (5) short GRB candidates show a macronova signal :)
- Macronova (kilonova) are extremely dim and in IR. Furthermore the sky is dominated by optical/IR transients at this level.
- Optical/uv neutrino wind signal is easier to detect but it is short lived.
- Room for other signatures
- Radio signal is robust (but depends on external density). Detection may take month no rush.

Short GRBs are (most likely) the best EM counterparts - but they are beamed :(

- 3 out of 3 (5) short GRB candidates show a macronova signal :)
- Macronova (kilonova) are extremely dim and in IR. Furthermore the sky is dominated by optical/IR transients at this level.
- Optical/uv neutrino wind signal is easier to detect but it is short lived.
- Room for other signatures
- Radio signal is robust (but depends on external density). Detection may take month no rush.

