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What and How?

@ Short GRBs

@ Macronova (kilonova)

@ Radio Flares

BHBH mergers and GW150914-GBM *?

Conclusions



Why?
(Kochaneck & TP 1993)

® Where (host, redshift,
distance ....)

@ Much more physics

@ Increase sensitivity
(and confidence)
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distance ....)

@ Much more physics

@ Increase sensitivity
(and confidence)




What and how?

* For ns? and ns-BH
Nothing is really expected for BHBH



Gamma - Ray Bursts (GRBs)
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Gamma - Ray Bursts (GRBs)

Once or twice a day we see a burst of low
energy gamma-rays lasting for a few seconds.



The energy
available is
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Can a small
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produce an
EM signal?
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LETTERS TO NATURE

Nucleosynthesis, neutrino bursts
and +y-rays from coalescing
neutron stars

David Eichler®, Mario LivioT, Tsvi Piran:
& David N, Schramm$§

NEUTRON-STAR collisions occur inevitably when binary neutron
stars spiral into each other as a result of damping of gravitational
radiation. Such collisions will produce a characteristic burst of
gravitational radiation, which may be the most promising source
of a detectable signal for proposed gravity-wave detectors'. Such
signals are sufficiently unique and robust for them to have been
proposed as a2 means of determining the Hubble constant”.
However, the rate of these neutron-star collisions is highly uncer-
tain’. Here we note that such events should also synthesize neutron-
rich heavy elements, thought to be formed by rapid neutron capture
(the r-process)’. Furthermore, these collisions should produce
neutrino bursts® and resultant bursts of y-rays; the latter should
comprise a subclass of observable y-ray bursts. We argue that
observed r-process abundances and y-ray-burst rates predict rates
for these collisions that are both significant and consistent with
other estimates.




GRBs - Observations

@ Prompt gamma rays (0.1-100 sec)
@ Energy 10*°-10°° ergs
@ Spectrum 300 keV but up to a few GeV

@ Afterglow: X-ray (™ days), optical (T weeks) and radio

(™ year)
GRBs - Theory

@ Relativistic jets (I'>100)

@ Afterglow - slowing down of the jet by interaction with
surrounding.



Eichior Then. b MacFadyen & Woosley,

Schramm, 88
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History of Long GRB-SN association

@ 1997/8: Indirect evidence long . 4
GRBs in star forming regions. .

@ 1998: Tentative association of the i Ya L
peculiar GRB 980425 with the T
very luminous SN 1998bw

@ 1999-2003 Red bumps in long
GRB light curves

@ 29 March 2003 Clear association
of SN 2003dh with GRB 030329




"™ ' GRBs are beamed - chance
g:- N\, ~  of coincidence <«1:10 (?)
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Orphan Afterglow

Early on- aX|s

Late off-axis
\

SGRBs are weak =>

Orphan afterglow is too weak @
(>24 mag) - not observed yet
even from long GRBs
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Different

components
of mass
outflows

from
mergers
(Hotokezata
& TP 15)

Merger shock breakout

Dynamical ejecta
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Merger shock breakout

B Cocoon

-

Dynamical ejecta




Merger shock breakout

B Cocoon

Dynamical ejecta




Merger shock breakout

Dynamical ejecta)

.
r'.r"o )



MClC I"On Ova*(Li & Paczynski 1997)

*Also called Kilonova

® Expanding cloud of
ejected matter.

® Radioactive decay of the
neutron rich matter.
Eradioactive ® 0.001 Mc? =
10%° (M/0.1 Mgyn) erg
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*Also called kHeweve Hektanova

® Expanding cloud of
ejected matter.

® Radioactive decay of the
neutron rich matter.
Eradioactive ® 0.001 Mc? =
10%° (M/0.1 Mgyn) erg
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MClC I"On OVG*(Li & Paczynski 1997)

® Expanding cloud of
ejected matter.

® Radioactive decay of the
neutron rich matter.
Eradioactive ® 0.001 Mc? =
10%° (M/0.1 Mgyn) erg

=> A weak short Supernova
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Supernova

Photosphere Photons escape

Powered by radioactive
decay of *°Ni->>*Co->>°Fe

luminosity

Ny

Ni 6.1 days

w days

fime



Radioactive Decay

(Freiburghaus+ 99; Metzger + 11; Goriely + 11;
Korobkin + 13; Wanajo + 14)

nuclear network, Y, = 0.04 —— |
Y,=0.20 ------- f

our fit formula -------

Tanaka_& Hotqkezaka}’1 3 ;
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Photons escape from
this region

The light curve

depends on
1. mass

2. velocity
3. opacity

Increase as we see large and larger fraction of
‘ the matter.

l/\—» Decrease due to
radioactive decay

fime

luminosity

Macronova



Photons escape from

this region
The light curve
depends on A A
1. mass N>
2. velocity AN
3. opacity

Increase as we see large and larger fraction of
‘ the matter.

l/\—» Decrease due to
radioactive decay

fime

luminosity

Macronova



Light Curve

mass with velocity >v

Diffusion time = expansion time =>
Mass of the “emitting region”

velocity

=> Luminosity [HUES (t)’"(’U) = €o(t/to) “m(v)

Radioactive heating rate
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me;(v) for different configurations
TP, Nakar & Rosswog, 13

w— | 4-1.4
1.0-1.0
1.2-1.2
1.6-1.6
1.8-1.8

2.0-2.0
1.2-1.0

- 1.4-1.0
1.4-1.2
- 1.6=1.0
- 1.6-1.2
1.6=1.4
- ——18-1.0
- — —1.8-14
2.0-1.0
~ = — 2.0=-1.4
- — —2.0-1.8
NS1.4=BHS5
NS1.4-BH10




Lanthanides dominate the Opacity
(Kasen & Barnes 13; Tanaka & Hotokezaka 13 )

@ k= 10cm?/gm

6'l'max OCKJI/Z =>lon ger
D Lmax OCK/-O'és => weaker
T ox 04 =>

TP, Nakar, Rosswog, 13
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Lanthanides dominate the Opacity
(Kasen & Barnes 13; Tanaka & Hotokezaka 13 )

@ k= 10cm?/gm

6'l'max OCKJI/Z =>lon ger
o Lmax OCK/-O'és => weaker
T ox 04 =>

uv or o tical -> TP, Nakar, Rosswog, 13



Peak time and peak luminosity

Opacity ejected mass




v driven winds

Different Y, different nucleosynthsis,
different opacity: k= lcm?/gm




iven winds - lightcurves

v dr

(Metzger & Fernandez 14

; Perego + 14)

Just + 14
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Grossman, Korobkin, Rosswog, TP 14



Combined macronova signal
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Detectability @ 300 Mpc

@Dynamical ejecta (IR signal)
® ~23.5-24.5 mag on a time scale of a few days

=> Rapid follow up is impossible in the IR.

@ Neutrino driven wind (UV/Blue signal)

® x23.7-24.2 mag on a time scale of a < day

=> Follow up is possible with HyperSupremeCamera on
subaru or continous cover with ZTF or equivalent.

" /.\-

@ False alarm: 60/(sq deg) at 24 (Nissanke + 13) WFIRST



Macronova Observations



GRB 1306038B

GRB130603b 310000 / DATE-OBS 2013-06-03715:53:59.5

GrRB 1306038  2=0.356 <=> 1 Gpc = 3 Glyr



GRB130603B @ 9 days AB

(6.6 days at the source frame)

R nlIR

HST image (Tanvir + 13)
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Tanvir + 13, Berger + 13



GRB 060614

Need M=0.1Mg
=> BH-NS ?

Yang et al., Nature Comm 15
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GRB 050709

Flux density (uJy)
O O O = =
A OO 0 O N

u
© 0 0 O«
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3
Frequency (10'4Hz)

5 10 20
Time since burst (days)

Jin et al., 16 submitted

Fox et al., 2005; Watson
et a., 2006 - not a
power law.

Re-analysis of the VLT

and a new unreported
HST point.

Need M=0.05Mg



GRB 050709

Flux density (uJy)
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Spectrum at 2 days

10 20 30 40 => v Wind?

Time since burst (days)




Astroarcheology Radioactive
data provides indirect evidence

B 2%Ppuyflux measured
> 244py, flux upper limit (25)

B 244py, flux ISM-model

244py (half life 81
Myr)

20,000 - 160,000

244py ISM flux at earth orbit (atoms per cm2 and My

Wallner + 14



Rare and "massive” events

— —
Macronova
candidate

1000

100

‘
10 Compact binary me

W

<— Advanced LIGO/ ™
Virgo/KAGRA ‘.
0.1 - :

0.0001 0.001 0.01 0.1 1

J

Ro [Myr]

Hotokezaka et al., Nature Phys 2015




Implication

@ Jin et al, 16 explored all nearby short GRB light
curves for which there is suitable data

@ In 3 out of 3 (5) a Macronova Candidate signal
was detected.

@ Some of the signals are in optical rather than IR
=> much easier to detect!

@ Early spectrum in 050709 suggest a
possible wind signature.

=> Promising detection prospects.



The Radio Flare
(Nakar & TP 2011)

A long lasting radio flare
due to the interaction of
the ejecta with
surrounding matter should
follow the macronova.
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The Radio Flare
(Nakar & TP 2011)
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A long lasting radio flare
due to the interaction of
the ejecta with
surrounding matter should
follow the macronova.



Supernova
Months

Macronova
WeekKs

Supernova remnant
a few x 10* years

Radio Flare
months - years



Search for the flare from GRB
1306038 by the EVLA
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Search for the flare from GRB
1306038 by the EVLA




Estimates of radio signals from
mergers (Hotokezaka + 16)

Model Ex lerg] (Bo) [] Liagm, lerg s™'Hz™'] L1325, Liadi
DNS, 1051 0.3 4-10% 8-10%  10%
DNS,, 3-10° 025 8-10% 102 2.10%
DNS; 10% 0.2 10%8 2-10%7 3.10%
BH-NS, 5-10°0 0.3 -10%0 5-10%  7.10%
BH-NS,, 2-10°0 025 -10%° 8-10%  10%
BH-NS; 5-100 0.2 -10% 9-10% 107

strong-jet 1049 ~ 1 - 10%8 102 2-10%

canonical-jet 1048 ~ 1 - 10%7 10%7 2-10%




Radio Light Curves
(Hotokezaka et al., 16)

DNS, 1.4GHz, D=200Mpc, n=0.1cm™

1 T TI1T11 | 1 1 | L L 1 1 1
jet-s (6=30°) jet-c (6=30°)
jet-s (6=45°) = jet-c (6=45°) =—
jet-s (B=60°) == jet-c (B=60°) ==

MW

JVLA/MeerkAT =15




DNS. Net 3. 1.4GHz, 30hr, 0.1cm™
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DNS, Net 3, 1.4GHz. 30hr, 1.0cm™ BH-NS, Net 3, 1.4GHz, 30hr, 1.0cm™

26 GW Localization Area [deg’] 26 GW Localization Area [deg’]

DNS, Net 3, 1.4GHz. 30hr, 0.1cm™ BH-NS. Net 3, 1.4GHz, 30hr, 0.1cm™

26 GW Localization Area [deg”] 26 GW Localization Area [deg?]

DNS, Net 3, 1.4GHz, 30hr, 0.01cm™ BH-NS, Net 3, 1.4GHz, 30hr, 0.01cm™

26 GW Localization Area [deg”] 26 GW Localization Area [deg”]
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Radio Flare Detectability
@ 300 Mpc

@ Detectable for high Ex and density and a quite
host (can be resolved on the VLA)

@ False positives: 0.1/sq deg.

@ Long observing time - no rush



The BHBH (GW150914)
EM counterpart problem

@>10%° ergs => > 107 mgun /

o Life time of a BHBH binary ‘
~1 Gyr (from minimal separation)

@ Cannot keep so much mass from
formation for 1 Gyr.



??7?

@ A short distance capture + matter injection

=> A 3 body interaction in a globular cluster?

4

t“
.
.

=> Maybe possible but extremely rare



@ Short GRBs are (most likely) the best EM
counterparts - but they are beamed :(

@ 3 out of 3 (5) short GRB candidates show a
macronova signal :)

@ Macronova (kilonova) are extremely dim and
in IR. Furthermore the sky is dominated by
optical/IR transients at this level.

@ Optical/uv neutrino wind signal is easier to
detect - but it is short lived.

@ Room for other signatures

@ Radio signal is robust (but depends on external “

density). Detection may take month - no rush. = ===
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